Reell analyse: Integrerbare funksjoner

Her kan du stille spørsmål vedrørende problemer og oppgaver i matematikk på høyskolenivå. Alle som har kunnskapen er velkommen med et svar. Men, ikke forvent at admin i matematikk.net er spesielt aktive her.

Moderatorer: Vektormannen, espen180, Aleks855, Solar Plexsus, Gustav, Nebuchadnezzar, Janhaa

Svar
espen180
Gauss
Gauss
Innlegg: 2578
Registrert: 03/03-2008 15:07
Sted: Trondheim

Følgende er en eksamensoppgave fra Analysens Grunnkurs på NTNU fra høsten 2012. Mitt bevis avviker fra løsningsforslaget, og analyse har aldri vært min sterke side, så jeg hadde satt pris på om noen kunne verifiere om beviset mitt holder mål eller om jeg har oversett noe eller gjort noe unødvendig komplisert. På forhånd takk.

La $f$ være en integrerbar funksjon på et målrom $(X, \mathcal{A},\mu)$. Vis at $$\lim_{t\to \infty} \int_{\{x:X \,:\, |f(x)|>t\} } |f|\text{d}\mu=0$$

Min løsning: At $f$ er integrerbar vil si at $\int_X |f|\text{d}\mu < \infty$. La $A_t=\{x:X \,:\, |f(x)|>t\}$. Det holder å se på $A_t$ for $t\in\mathbb{N}$. Definer $A=\bigcap_{t=0}^{\infty} A_t$. Observer at $A\in\mathcal{A}$. Vi observerer først at $$\lim_{t\to \infty} \int_{A_t} |f|\text{d}\mu = \lim_{t\to\infty}\int_X |f|\chi_{A_t}\text{d}\mu$$ der $\chi_A$ er den karakteristiske funksjonen til $A\subseteq X$ osv, og merker oss at $|f|\chi_{A_t}$ er en synkende følge som konvergerer til $|f|\chi_{A}$. Det vil si at følgen er dominert av $|f|=|f|\chi_{A_0}$, så ved dominert konvergensteorem har vi $$\lim_{t\to\infty} \int_{A_t}|f|\text{d}\mu = \int_A |f|\text{d}\mu$$
Vi viser at $\mu(A)=0$. Antar vi det motsatte, har vi at $\int_A|f|\text{d}\mu > t\mu(A)$ for alle $t\in\mathbb{N}$, altså $\int_A|f|\text{d}\mu = \infty$, som er en motsier antagelsen om at $f$ er integrerbar. Altså er $\mu(A)=0$ og
$$\lim_{t\to \infty} \int_{A_t} |f|\text{d}\mu=\int_A |f|\text{d}\mu=0$$
som skulle vises.
Gustav
Tyrann
Tyrann
Innlegg: 4560
Registrert: 12/12-2008 12:44

Syns beviset ditt ser riktig ut. Er det noe spesielt punkt i beviset du var i tvil om?
espen180
Gauss
Gauss
Innlegg: 2578
Registrert: 03/03-2008 15:07
Sted: Trondheim

Tusen takk.
I mitt hode var det ikke noen tvil om at beviset holdt mål, men jeg ble forvirret over at løsningsforslaget går veien om å definere et mål
$$\nu(U):=\int_U |f|\text{d}\mu$$
og viser så at $\nu(A)=0$.
Jeg syntes det var en unødvendig komplikasjon, og lurte på om det var noe, muligens åpenbart, som jeg hadde oversett.
Her er løsningsforslaget hvis du er interessert: https://wiki.math.ntnu.no/_media/tma422 ... en_sol.pdf
Takk igjen.
Svar