likning og ant par

Her kan du stille spørsmål vedrørende problemer og oppgaver i matematikk på høyskolenivå. Alle som har kunnskapen er velkommen med et svar. Men, ikke forvent at admin i matematikk.net er spesielt aktive her.

Moderatorer: Vektormannen, espen180, Aleks855, Solar Plexsus, Gustav, Nebuchadnezzar, Janhaa

Svar
Janhaa
Boltzmann
Boltzmann
Innlegg: 8552
Registrert: 21/08-2006 03:46
Sted: Grenland

Hvor mange heltalls-par (x, y) for x > 0 og y > 0
oppfyller likningen:

[tex]\large 2^{3^x}\,=\,3^{2^y}\,-\,1[/tex]

ser jo at for x = y = 0
og x = y = 1 har vi to par.
Finnes flere?
Forslag til løsning?
La verken mennesker eller hendelser ta livsmotet fra deg.
Marie Curie, kjemiker og fysiker.

[tex]\large\dot \rho = -\frac{i}{\hbar}[H,\rho][/tex]
Gustav
Tyrann
Tyrann
Innlegg: 4558
Registrert: 12/12-2008 12:44

Janhaa skrev:Hvor mange heltalls-par (x, y) for x > 0 og y > 0
oppfyller likningen:
[tex]\large 2^{3^x}\,=\,3^{2^y}\,-\,1[/tex]
Anta $y\geq 2$: Da kan vi skrive likningen som $2^{3^x}=81^{2^{y-2}}-1$. Observér at $81^{2^{y-2}}\equiv 1\pmod 5\Rightarrow 81^{2^{y-2}}-1\equiv 0\pmod 5$.

Betrakter vi $2^n\pmod 5$ for $n=1,2,3,...$ så finner vi mønsteret $2,4,3, 1,2,4,3,1,...$. Det følger at $2^{3^x}\not \equiv 0\pmod 5$ for alle naturlige tall $x$.

Dermed må vi ha at $y=1$. Setter vi y=1 får vi $2^{3^x}=8\Rightarrow x=1$, så $(x,y)=(1,1)$ er eneste løsning.

edit: motivasjonen for å velge å regne modulo 5 er som følger: Vi vet at $x^2-1=(x-1)(x+1)$. Dermed blir $x^{2^2}-1=(x^2)^2-1=(x^2-1)(x^2+1)$. Videre blir $x^{2^3}-1=(x^{2^2})^2-1=(x^{2^2}-1)(x^{2^2}+1)=(x^2-1)(x^2+1)(x^{2^2}+1)$. Induktivt kan man vise at $x^2+1$ alltid blir en faktor i uttrykk på formen $x^{2^y}-1$ så lenge y>1. Setter vi så inn x=3 så betyr det at $3^2+1=10$ alltid er en faktor i $3^{2^y}-1$, så siden $5$ er en faktor i 10, er 5 er alltid en faktor. Dermed vil høyresida alltid være ekvivalent med $0$ modulo $5$ så lenge y>1.
Janhaa
Boltzmann
Boltzmann
Innlegg: 8552
Registrert: 21/08-2006 03:46
Sted: Grenland

plutarco skrev:
Janhaa skrev:Hvor mange heltalls-par (x, y) for x > 0 og y > 0
oppfyller likningen:
[tex]\large 2^{3^x}\,=\,3^{2^y}\,-\,1[/tex]
Anta $y\geq 2$: Da kan vi skrive likningen som $2^{3^x}=81^{2^{y-2}}-1$. Observér at $81^{2^{y-2}}\equiv 1\pmod 5\Rightarrow 81^{2^{y-2}}-1\equiv 0\pmod 5$.
Betrakter vi $2^n\pmod 5$ for $n=1,2,3,...$ så finner vi mønsteret $2,4,3, 1,2,4,3,1,...$. Det følger at $2^{3^x}\not \equiv 0\pmod 5$ for alle naturlige tall $x$.
Dermed må vi ha at $y=1$. Setter vi y=1 får vi $2^{3^x}=8\Rightarrow x=1$, så $(x,y)=(1,1)$ er eneste løsning.
edit: motivasjonen for å velge å regne modulo 5 er som følger: Vi vet at $x^2-1=(x-1)(x+1)$. Dermed blir $x^{2^2}-1=(x^2)^2-1=(x^2-1)(x^2+1)$. Videre blir $x^{2^3}-1=(x^{2^2})^2-1=(x^{2^2}-1)(x^{2^2}+1)=(x^2-1)(x^2+1)(x^{2^2}+1)$. Induktivt kan man vise at $x^2+1$ alltid blir en faktor i uttrykk på formen $x^{2^y}-1$ så lenge y>1. Setter vi så inn x=3 så betyr det at $3^2+1=10$ alltid er en faktor i $3^{2^y}-1$, så siden $5$ er en faktor i 10, er 5 er alltid en faktor. Dermed vil høyresida alltid være ekvivalent med $0$ modulo $5$ så lenge y>1.
takker for forklaringa.
La verken mennesker eller hendelser ta livsmotet fra deg.
Marie Curie, kjemiker og fysiker.

[tex]\large\dot \rho = -\frac{i}{\hbar}[H,\rho][/tex]
Svar