Linje , areal og funksjon

Her kan brukere av forum utfordre hverandre med morsomme oppgaver og nøtter man ønsker å dele med andre. Dette er altså ikke et sted for desperate skrik om hjelp, de kan man poste i de andre forumene, men et sted for problemløsing på tvers av trinn og fag.

Moderatorer: Vektormannen, espen180, Aleks855, Solar Plexsus, Gustav, Nebuchadnezzar, Janhaa

Svar
Nebuchadnezzar
Fibonacci
Fibonacci
Innlegg: 5648
Registrert: 24/05-2009 14:16
Sted: NTNU

Linja [tex]y \, = \, mx \, + \, b[/tex] krysser parabelen [tex]x^2[/tex] i [tex]A[/tex] og [tex]B[/tex]. Vi plasserer et punkt [tex]P[/tex] på parabelen mellom [tex]A[/tex] og [tex]B[/tex]. Her antar at [tex]m[/tex] og [tex]b[/tex] er to reelle tall.

Finn punktet [tex]P[/tex] slik at arealet av [tex]ABP[/tex] blir størst mulig. Hva blir arealet?

Bilde
"Å vite hva man ikke vet er og en slags allvitenhet" - Piet Hein
https://s.ntnu.no/Integralkokeboken
Lektor - Matematikk, Fysikk og Informatikk
Janhaa
Boltzmann
Boltzmann
Innlegg: 8552
Registrert: 21/08-2006 03:46
Sted: Grenland

Du skal ha kudos for å lage/finne oppgaver som tar nattesøvnen fra folk :-)
Prøvde meg på noen ulike metoder;

1) tenkte at arealet er størst når vinkel BAP = 90 grader. Fant så stigningstalla til linjene AB og AP. Da veit vi jo; a(AB)*a(AP) = -1.
Men etterhvert forstod jeg dette ikke var rett og ikke førte fram!

2)
gitt som sagt;
[tex]y_1=mx+b[/tex]
og
[tex]y_2=x^2[/tex]
der
[tex]y_1=y_2[/tex]
gir
[tex]x=\frac{m\pm \sqrt{m^2+4b}}{2}[/tex]

så klarte jeg å finne stygt uttrykk for linjestykkene AP = grunnflata og høyden (normalen fra B på AP). Og fikk etterhvert et vederstyggelig areal, A(x). Som jeg deriverte og satte lik null. Omsider forbausa det meg at P så ut til å ha en pen x-koordinat, nemlig x= m/2.

Men jeg fant i natt ut disse algebraiske sjølmordslikningene blei for "komplekse" og tungvinte. Så jeg oppdaga faktisk både en 3. og 4. måte.!
Den ene er litt smart, og jeg trur den er riktig, siden x= m/2 samsvarte med 2 ulike metoder.
Først og fremst er x = m/2 korrekt?

Jeg skal føre inn den seinere i dag, hvis ingen kommer meg i forkjøpet da...
La verken mennesker eller hendelser ta livsmotet fra deg.
Marie Curie, kjemiker og fysiker.

[tex]\large\dot \rho = -\frac{i}{\hbar}[H,\rho][/tex]
Nebuchadnezzar
Fibonacci
Fibonacci
Innlegg: 5648
Registrert: 24/05-2009 14:16
Sted: NTNU

x=m/2 ja =)

Men husk oppgaven bad om punktet [tex]P[/tex] og arealet. Så du er nesten der ^^

Selv fant jeg et uttrykk for lengden [tex]AB[/tex], så fant jeg ei linje som stod vinkelrett på [tex]AB[/tex] og gikk gjennom punktet [tex]P[/tex]. Fant den korteste avstanden mellom [tex]AB[/tex] og [tex]P[/tex], kaller denne for k.

Da er arealet [tex]A=\frac{k\cdot|AB|}{2}[/tex] deriverte denne stygge greia her og fant ut av x=m/2

Brukte kryssproduktet til å finne arealet.

Gleder meg til å se den lette løsningen, og jeg har mange flere geometriske oppgaver på lager ^^
"Å vite hva man ikke vet er og en slags allvitenhet" - Piet Hein
https://s.ntnu.no/Integralkokeboken
Lektor - Matematikk, Fysikk og Informatikk
Janhaa
Boltzmann
Boltzmann
Innlegg: 8552
Registrert: 21/08-2006 03:46
Sted: Grenland

Jeg veit Nebu., men nå er det R1 og R2. :wink:

Skal se hva jeg får tid til i kveld/natt.

Uansett;

[tex]P=(\frac{m}{2},\, \frac{m^2}{4})[/tex]

[tex]A(\frac{m}{2})=\frac{(m^2+4b)^{\frac{3}{2}}}{8}[/tex]
La verken mennesker eller hendelser ta livsmotet fra deg.
Marie Curie, kjemiker og fysiker.

[tex]\large\dot \rho = -\frac{i}{\hbar}[H,\rho][/tex]
Thales
Brahmagupta
Brahmagupta
Innlegg: 369
Registrert: 05/03-2008 16:04
Sted: Steigen

Ok, etter å ha set på uttalige måter å løse den(med funksjoner, integraler, trigonometri, geometri), så satser jeg på en geometrisk får å finne arealet av trekanten. Underveis vil jeg også vise noen ganske så fine egenskaper ^^

Let's go:

La oss kalle arealet til trekanten ABP for A.
Setter [tex]f(x)=mx+b \ og \ g(x)=x^2[/tex]
x koordinatet til et punkt N blir skrevet [tex]x_N[/tex]. Samme for y.

I løpet av hele utregningen antas det at:

[tex]x_B \ge x_P \ge x_A[/tex]

Setter opp en par likheter som kommer til å hjelpe oss underveis:

[tex]x_A = \frac{m-sqrt{m^2+4b}}{2} \ \mathrm{og} \ x_B = \frac{m+sqrt{m^2+4b}}{2}\\ \Rightarrow x_A \cdot x_B = -b \\ \Rightarrow x_A + x_B = m \\ \Rightarrow x_B - x_A = \sqrt{m^2+4b} \\ y_N={x_N}^2 \ \mathrm{for \ alle \ punkt \ N} [/tex]

Areal av en trekant:

[tex]{A = \frac{|x_A(y_P-y_B)+x_P(y_B-y_A)+x_B(y_A-y_P)|}{2}}\\ A = \frac{|x_A {x_P}^2- x_A {x_B}^2 + x_P {x_B}^2- x_P {x_A}^2+x_B {x_A}^2- x_B {x_P}^2)|}{2}\\ A=\frac{|{x_P}^2(x_A-x_B)+x_P({x_B}^2-{x_A}^2)+{x_A}^2x_B-x_A{x_B}^2|}{2}\\ A=\frac{|{x_P}^2(x_A-x_B)-x_P(x_A-x_B)(x_A+x_B)+x_Ax_B(x_A-x_B)|}{2}\\A=\frac{|(x_A-x_B)({x_P}^2-x_P\cdot m-b)|}{2}[/tex]

La oss pause et øyeblikk for å legge merke til noe ganske så fint:

[tex]A=\frac{|(x_A-x_B)(g(x)-f(x))|}{2}=\frac{(x_B-x_A)(f(x)-g(x))}{2}[/tex]

Som er arealet av en trekant med lenge [tex]x_B-x_A[/tex] og høyde [tex]f(x)-g(x)[/tex], eller omvendt.

Vi kan ta bort absoluttverdien siden:

[tex]x_B \ge x_A[/tex] og [tex]f(x)\ge g(x) \ \forall \ x \in [x_A;x_B] [/tex]

Ok, vi fortsetter:

[tex]A=\frac{|(x_A-x_B)({x_P}^2-x_P\cdot m-b)|}{2}\\A=\frac{(x_B-x_A)(-{x_P}^2+x_P\cdot m+b)}{2}\\A^{\prime}=\frac{(x_B-x_A)(-2x_P+m)}{2}[/tex]

A er maksimalt når A'=0:

[tex]\frac{(x_B-x_A)(-2x_P+m)}{2}=0 \ \Leftrightarrow (x_B-x_A)(-2x_P+m)=0 \\ x_B-x_A=0 v -2x_P+m=0\\ x_B=x_A v x_P=\frac{m}{2}[/tex]

Når [tex]x_B\neq x_A[/tex] er [tex]x_P=\frac{m}{2}[/tex].

Når [tex]x_B=x_A[/tex] er [tex]x_A=x_B=0=x_P[/tex] Altså er [tex]x_P[/tex] også
[tex]\frac{m}{2}=\frac{x_A+x_B}{2}[/tex].

Altså er arealet av [tex]ABP[/tex] størst mulig når [tex]x_P = \frac{m}{2}[/tex]
Da er :

[tex]A=\frac{(x_B-x_A)(-{x_P}^2+x_P\cdot m+b)}{2}\\ A = \frac{\left(\sqrt{m^2+4b}\right)\left(-{\left(\frac{m}{2}\right)}^2+\frac{m}{2}\cdot m+b\right)}{2}\\ A = \frac{\left(sqrt{m^2+4b}\right)\left(\frac{-m^2+2m^2+4b}{4}\right)}{2}\\ A = \frac{(sqrt{m^2+4b})({m^2+4b})}{8}\\ A = \frac{(m^2+4b)^{\frac{2}{3}}}{8}[/tex]
Sist redigert av Thales den 01/06-2011 18:29, redigert 1 gang totalt.
1. aar paa MIT(Freshman)

Anbefaler sterkt å sjekke denne artikkelen
Nebuchadnezzar
Fibonacci
Fibonacci
Innlegg: 5648
Registrert: 24/05-2009 14:16
Sted: NTNU

Pent, pent. Lite spørsmål bruker du Herons formel helt i begynnelsen, eller vektorer når du definerer arealet av trekanten ?
"Å vite hva man ikke vet er og en slags allvitenhet" - Piet Hein
https://s.ntnu.no/Integralkokeboken
Lektor - Matematikk, Fysikk og Informatikk
Thales
Brahmagupta
Brahmagupta
Innlegg: 369
Registrert: 05/03-2008 16:04
Sted: Steigen

Nebuchadnezzar skrev:Pent, pent. Lite spørsmål bruker du Herons formel helt i begynnelsen, eller vektorer når du definerer arealet av trekanten ?
Faktisk noe annet, en formel for å finne arealet av en trekant ut i fra koordinatene. Ta en titt her:

http://www.mathopenref.com/coordtrianglearea.html

Veldig fin oppgave forresten, mulig å løse på så mange måter, noen mer effektive en andre. Det er den typen nøtter jeg liker mest ;)
1. aar paa MIT(Freshman)

Anbefaler sterkt å sjekke denne artikkelen
Nebuchadnezzar
Fibonacci
Fibonacci
Innlegg: 5648
Registrert: 24/05-2009 14:16
Sted: NTNU

Sløvt at jeg kunne glemme noe sånt

http://www.matematikk.net/ressurser/mat ... hp?t=27223
"Å vite hva man ikke vet er og en slags allvitenhet" - Piet Hein
https://s.ntnu.no/Integralkokeboken
Lektor - Matematikk, Fysikk og Informatikk
Janhaa
Boltzmann
Boltzmann
Innlegg: 8552
Registrert: 21/08-2006 03:46
Sted: Grenland

Ja, endel fiffige løsninger her. Artig den der Thales!

Nå skal jeg få inn løsninga mi også;

definerer:
[tex]\text A=(a,a^2),\,\, A^,=(a,0),\, B=(c,c^2),\,\, B^,=(c,0),\,\, P(x,x^2)\,\, og \,\,P^,(x,0) da har vi: Areal(ABP)=A(blue)=Areal(A^,ABB^,)\,-\, Areal(A^,APP^,)\,-\, Areal(P^,PBB^,)=A(x)[/tex]

der

[tex]A(x)=\frac{(a^2+c^2)(c-a)}{2}\,-\,\frac{(a^2+x^2)(x-a)}{2}\,-\,\frac{(x^2+c^2)(c-x)}{2}[/tex]

finner max;

[tex]A^,(x)=-0,5[2x(x-a)+(a^2+x^2)]\,-\,0,5[2x(c-x)-(c^2+x^2]=0[/tex]

[tex]2x^2\,-\,2xa+a^2+x^2+2xc-2x^2-c^2-x^2=0[/tex]

[tex]2x(c-a)=c^2-a^2=(c-a)(c+a)[/tex]

[tex]x=\frac{a+c}{2}[/tex]

så veit vi jo for[tex]\,\,c>a[/tex]

[tex]a=\frac{m-\sqrt{m^2+4b}}{2}[/tex]
og
[tex]c=\frac{m+\sqrt{m^2+4b}}{2}[/tex]

slik at:

[tex]x=\frac{m}{2}[/tex]
og
[tex]P=(\frac{m}{2},\frac{m^2}{4})[/tex]

endelig;

[tex]A(\frac{m}{2})=\frac{(m^2+4b)^{3\over 2}}{8}[/tex]
La verken mennesker eller hendelser ta livsmotet fra deg.
Marie Curie, kjemiker og fysiker.

[tex]\large\dot \rho = -\frac{i}{\hbar}[H,\rho][/tex]
Svar