Trigonometrisk ulikhet

Her kan brukere av forum utfordre hverandre med morsomme oppgaver og nøtter man ønsker å dele med andre. Dette er altså ikke et sted for desperate skrik om hjelp, de kan man poste i de andre forumene, men et sted for problemløsing på tvers av trinn og fag.

Moderatorer: Vektormannen, espen180, Aleks855, Solar Plexsus, Gustav, Nebuchadnezzar, Janhaa

Svar
Charlatan
Guru
Guru
Innlegg: 2499
Registrert: 25/02-2007 17:19

Hvis [tex]\sin\alpha+\sin\beta+\sin\gamma = 1[/tex], og [tex]0 \leq \alpha,\beta\gamma<90 [/tex],

vis at [tex]\tan^2\alpha+\tan^2\beta+\tan^2\gamma \geq \frac{3}{8}[/tex]
Zivert
Dirichlet
Dirichlet
Innlegg: 160
Registrert: 30/01-2008 09:33

Er ikke dette Baltic Way 2005 oppg 2 da?? :D
Charlatan
Guru
Guru
Innlegg: 2499
Registrert: 25/02-2007 17:19

:) jepp, svært til observant du skulle være da. Morsom likevel, og fin til introduksjon av HM-GM-AM-QM.
mrcreosote
Guru
Guru
Innlegg: 1995
Registrert: 10/10-2006 20:58

Jensen duger også:

La x=sin a, y=sin b, z=sin c, da er [tex]0\le x,y,z<1[/tex], x+y+z=1.

Siden [tex]\tan^2 u = \frac{\sin^2 u}{\cos^2 u} = \frac{\sin^2 u}{1-\sin^2 u}[/tex], ønsker vi å vise [tex]\frac{x^2}{1-x^2}+\frac{y^2}{1-y^2}+\frac{z^2}{1-z^2}\ge\frac38[/tex].

Funksjonen [tex]\frac{x^2}{1-x^2}[/tex] er konveks på [0,1), så Jensens ulikhet gir

[tex]\sum\frac{x^2}{1-x^2}\ge3\frac{\left(\frac{x+y+z}3\right)^2}{1-\left(\frac{x+y+z}3\right)^2}=\frac38[/tex].
Svar