Formler som skal være kjent ved Del 1 av eksamen i REA3022 Matematikk R1 (Formelarket kan ikke brukes på Del 1 av eksamen.) $ax^{2} + bx + c = 0 \Leftrightarrow x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$ $ax^{2} + bx + c = a(x - x_{1})(x - x_{2})$ Likning av andre andregradsuttrykk Nullpunkter og polynomdivisjon $e^{\ln x} = x$ $10^{\lg x} = x$ $\lg a^x = x \cdot \lg a$ $\ln a^x = x \cdot \ln a$ $\lg(ab) = \lg a + \lg b$ ln(ab) = lna + lnb $\ln \frac{a}{b} = \ln a - \ln b$ $\lg \frac{a}{b} = \lg a - \lg b$ $a^{x} = b \iff x = \frac{\lg b}{\lg a}$ $a^x = b \iff x = \frac{\ln b}{\ln a}$ $e^x = b \iff x = \ln b$ $\ln x = c \iff x = e^c$ $10^x = b \iff x = \lg b$

	$\lg x = c \iff x = 10^{c}$	In <i>x</i> =	
Grenseverdier	Utregning av grenseverdier		
	Horisontale og vertikale asymptoter		

grad

Faktorisering av

Polynomer

Logaritmer

Vektorregning

	Definisjon av den deriverte $f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$
Derivasjon	Derivasjonsregler for potens-, kvadratrot-, eksponential-
	logaritmefunksjoner

Derivasjonsregler for sum, differanse, produkt og kvotient Kjerneregel

Kombinatorikk	$nPr = n(n-1)\cdot\cdot (n-r+1) = \frac{n!}{(n-r)!}$
	$nCr = \binom{n}{r} = \frac{n!}{r! \cdot (n-r)!}$
	Sannsynlighet ved systematiske oppstillinger

 $n! = 1 \cdot 2 \cdot 3 \cdot \dots \cdot n$

	$P(A \cap B) = P(A) \cdot P(B \mid A)$	
Sannsynlighet	$P(A \cap B) = P(A) \cdot P(B)$	når A og B er uavhengige
	$P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{P(A) \cdot P(B)}{P(B)}$	<i>A</i>)

Regning med vektorer geometrisk som piler i planet
$[x,y] = x\vec{e}_x + y\vec{e}_y$
t[x,y] = [tx,ty]

$$[x_1, y_1] \pm [x_2, y_2] = [x_1 \pm x_2, y_1 \pm y_2]$$

$$[x_1, y_1] \cdot [x_2, y_2] = x_1 \cdot x_2 + y_1 \cdot y_2$$

$$|[x, y]| = \sqrt{x^2 + y^2}$$

og

	<u>, </u>	
	$[x_1, y_1] = [x_2, y_2] \Leftrightarrow x_1 = x_2 \text{ og } y_1 = y_2$	
	$\overrightarrow{AB} = [x_2 - x_1, y_2 - y_1]$ fra $A(x_1, y_1)$ til $B(x_2, y_2)$	
	$\vec{a} \cdot \vec{b} = \vec{a} \cdot \vec{b} \cdot \cos u$ u er vinkel mellom \vec{a} og \vec{b}	
	$ \vec{a} = \sqrt{\vec{a}^2}$	
	$\vec{a} \mid \mid \vec{b} \iff \vec{a} = t\vec{b}$	
	$\vec{a} \perp \vec{b} \iff \vec{a} \cdot \vec{b} = 0$	
	$\int x = x_0 + at$ (x_0, y_0) er et punkt på linja	
	$y = y_0 + bt$ $\vec{v} = [a, b]$ er parallell med linja	
	$\vec{r}(t) = [x(t), y(t)]$ Vektorfunksjon	
	$\vec{v}(t) = \vec{r}'(t) = [x'(t), y'(t)]$ Fartsvektor	
Vektorfunksjon	$ \vec{v}(t) $ Fart	
	$\vec{a}(t) = \vec{v}'(t) = [x''(t), y''(t)]$ Akselerasjonsvektor	
	$ \vec{a}(t) $ Akselerasjon	
Geometri	Pytagoras' setning Formlikhet Periferivinkler Skjæringssetninger for høydene, halveringslinjene, midtnormalene og medianene i en trekant	
	Sirkellikning:	
	$(x-x_0)^2+(y-y_0)^2=r^2 \qquad S(x_0,y_0) \ \ \text{er sentrum i sirkelen},$ $r \ \ \text{er radius i sirkelen}$	
	Sirkellikningen må kunne utledes ved hjelp av vektorregning på koordinatform, omformes ved hjelp av fullstendige kvadraters metode. Sirkelen må også kunne tegnes som to grafer, jf. kapittel 1.8.	

Eksamensoppgavene lages ut fra kompetansemålene i læreplanen, og utvalget av formler ovenfor angir derfor ikke begrensninger av kompetansemål som kan prøves i Del 1.

Dersom oppgavetemaet krever det, kan mer kompliserte formler bli oppgitt som en del av oppgaveteksten i Del 1.

Det forutsettes at eleven behersker grunnleggende formler og framgangsmåter fra tidligere kurs og skolegang.