Tips til hoderegning S2? Skriv et svar


Dette spørsmålet er en metode for identifisering og hindring av automatiserte innsendinger.
Smil
:D :) :( :o :shock: :? 8-) :lol: :x :P :oops: :cry: :evil: :twisted: :roll: :wink: :!: :?: :idea: :arrow: :| :mrgreen:
BBCode er
[img] er
[flash] er AV
[url] er
Smil er
Emne
   

Utvid visningen Emne: Tips til hoderegning S2?

Re: Tips til hoderegning S2?

Innlegg Honning » 21/05-2020 16:26

Tusen takk, begge to!

Spesielt det med å utvide brøken blir en gamechanger for meg, om det er lov å si:)

Re: Tips til hoderegning S2?

Innlegg SveinR » 20/05-2020 22:37

Gjest skrev:1080 / 36 (som er lik 30)

I slike brøkstykker lønner det seg ofte å faktorisere - men for å forenkle de store tallene litt først kan det nok være nyttig å dele teller/nevner på 2 et par ganger her (vi ser at begge er partall, så det skal være greit):

$\frac{1080}{36} = \frac{540}{18} = \frac{270}{9}$

Her kan vi kanskje gjenkjenne $9$-gangeren, og huske at $27 = 9\cdot 3$. Og da kan vi få

$\frac{270}{9} = \frac{27\cdot 10}{9} = \frac{9\cdot 3 \cdot 10}{9} = \frac{3\cdot 10}{1} = 30$


Gjest skrev:6 / 0.4 (som er lik 15)

Når vi deler på tall under $1$ (eller desimaltall i det hele tatt), kan det lønne seg å utvide brøken slik at vi slipper desimaltallene. Om vi utvider med $10$ i teller/nevner får vi:

$\frac{6}{0.4} = \frac{60}{4}$

Og da ser du kanskje hvordan vi kan forkorte den videre?


Gjest skrev:360 / 0.30

Vi kan bruke samme strategi her, altså å utvide med $10$ i teller/nevner:

$\frac{360}{0.30} = \frac{3600}{3}$

Om vi ikke ser direkte hva denne brøken blir, kan vi kanskje gjenkjenne at $\frac{36}{3} = 12$. Og da kan vi faktorisere telleren og få inn dette delestykket:

$\frac{3600}{3} = \frac{36\cdot 100}{3} = 12\cdot 100 = 1200$


Gjest skrev:0.1 * 0.05

Det å gange med $0.1$ er veldig greit, for det er det samme som å gjøre tallet $10$ ganger mindre - altså å flytte komme én plass fremover:

$0.1\cdot 0.05 = 0.005$

Re: Tips til hoderegning S2?

Innlegg Løs_ODE » 20/05-2020 21:55

Hvis vi vil dele et tall [tex]c[/tex] med et tall [tex]a[/tex] for å få resultatet [tex]b[/tex] så er[tex]\frac{c}{a}=\frac{c_1,c_2, c_3,c_4,c_5...}{a_1,a_2,a_3,a_4,a_5 ...}[/tex] Nå kan du finne de sukssesive leddene [tex]b_1, b_2 ..[/tex] ved å bruke

[tex]b_1=\frac{c_1,c_2}{a_1}[/tex] med rest [tex]r_1[/tex]

[tex]b_2=\frac{r_1,c_3-b_1*a_2}{a_1}[/tex] med rest [tex]r_2[/tex]

med det generelle leddet definert som
[tex]b_i=\frac{r_{i-1},c_{i+1}-\sum _{j=2}^{i}b_{i-j+1}*a_j}{a_1}[/tex] med rest [tex]r_1[/tex]

Tips til hoderegning S2?

Innlegg Gjest » 20/05-2020 21:13

Hei!

Dette er kanskje et noe uvanlig spørsmål, men jeg synes det er mye utfordrende hoderegning i S2 del 1. Men kanskje det finnes noen triks jeg aldri lærte meg?

Her kommer eksempler som må løses i hodet på en S2-eksamen:

1080 / 36 (som er lik 30)

6 / 0.4 (som er lik 15)

360 / 0.30

0.1 * 0.05

Den første kan man sikkert forkorte helt til man ser svaret, men synes det er utfordrende å dele på tall under 1 eller multiolisere to tall under 1. Finnes det noen måte å gjøre om disse på?

Topp