Trigonometrisk likning med cosinus multiplisert med sinus Skriv et svar


Dette spørsmålet er en metode for identifisering og hindring av automatiserte innsendinger.
Smil
:D :) :( :o :shock: :? 8-) :lol: :x :P :oops: :cry: :evil: :twisted: :roll: :wink: :!: :?: :idea: :arrow: :| :mrgreen:
BBCode er
[img] er
[flash] er AV
[url] er
Smil er
Emne
   

Utvid visningen Emne: Trigonometrisk likning med cosinus multiplisert med sinus

Re: Trigonometrisk likning med cosinus multiplisert med sinu

Innlegg Mattegjest » 10/09-2018 18:43

NB ! To vinklar med sum lik [tex]\pi[/tex] ( supplementvinklar ) har same sin-verdi, dvs.

sin( 2x ) = sin( [tex]\pi[/tex] - 2x )

Her får du inn den løysinga du saknar !

Trigonometrisk likning med cosinus multiplisert med sinus

Innlegg be23 » 10/09-2018 18:06

Hei! Driver med en oppgave fra matematikk oppgradering 2 som er noe tilsvarende R2. Denne oppgaven handler om trigonometriske likninger.
Oppgaven er at jeg skal finne ut når [tex]3 * sin(x)*cos(x) = 1[/tex], [tex]x \epsilon [1,\pi][/tex].
Jeg har regnet meg fram til at første gang funksjonen [tex]f(x)=3*sin(x)*cos(x)[/tex] er lik 1 er i punktet (0,37, 1) i et koordinatsystem. Jeg brukte følgende utregning:
[tex]3*sin(x)*cos(x) = 1[/tex]
[tex][tex]sin(x)*cos(x) = \frac{1}{3} /:3[/tex]
[tex]2*sin(x)*cos(x)=\frac{2}{3} /*2[/tex]
[tex]sin(2x) = \frac{2}{3} / 2*sin(x)*cos(x)=sin(x)[/tex]
[tex]sin^{-1}(sin(2x)) = sin^{-1}(\frac{2}{3})[/tex]
[tex]2x\approx 0.73[/tex]
[tex]x \approx 0.37[/tex]
(Bak skråstrekene her prøver jeg bare å vise hvilken operasjon jeg har gjort, prøver ikke å dele på noe - hvis det var uklart :lol: )

Men dette er ikke et gyldig svar, siden x skal være mellom 1 og pi. Så spørsmålet mitt er:
Hvordan finner jeg resten av punktene? Hvordan vet jeg hvor langt det er til neste punkt? :?

Topp