Basic analyse Skriv et svar


Dette spørsmålet er en metode for identifisering og hindring av automatiserte innsendinger.
Smil
:D :) :( :o :shock: :? 8-) :lol: :x :P :oops: :cry: :evil: :twisted: :roll: :wink: :!: :?: :idea: :arrow: :| :mrgreen:
BBCode er
[img] er
[flash] er AV
[url] er
Smil er
Emne
   

Utvid visningen Emne: Basic analyse

Re: Basic analyse

Innlegg Stringselings » 29/04-2019 19:32

yeh, takk :)

Re: Basic analyse

Innlegg DennisChristensen » 29/04-2019 17:28

Stringselings skrev:
1.png

Denne oppgaven føles veldig opplagt ut, noe som ofte fører til at jeg begrunner for dårlig.
Så jeg lurer på hvordan dere ville ha begrunnet/ført oppgave a og b.

Mine tanker:
Siden [tex]u(x)[/tex] er kontinuerlig kan bare [tex]u(x)[/tex] divergere når [tex]x\rightarrow\pm\infty[/tex].
Men siden [tex]\lim_{x\to\infty}u(x)=b[/tex], [tex]\lim_{x\to-\infty}u(x)=a[/tex] er ikke dette tilfellet, og [tex]u(x)[/tex] må være bundet [tex]\mid{u(x)}\mid\leq{M}=\sup_{x\in\mathbf{R}}\mid{u(x)}\mid[/tex]


Du er inne på riktige tanker, men vi er nødt til å bruke definisjonene ordentlig for å formulere et skikkelig bevis.
(a) Vi vet at $\lim_{x\rightarrow+\infty}u(x) = a\in\mathbb{R}$, så $\forall\varepsilon > 0 \exists K \geq 0$ slik at $x > K \implies |u(x) - a| < \varepsilon$. Især vet vi da at det finnes $C\geq 0$ slik at $x\geq C \implies |u(x) - a| < 1 \implies |u(x)| < |a| + 1$. Dermed kan vi la $B = |a| + 1$ for å bevise (a).

Klarer du (b) nå?

Basic analyse

Innlegg Stringselings » 29/04-2019 15:44

1.png
1.png (42.3 KiB) Vist 612 ganger

Denne oppgaven føles veldig opplagt ut, noe som ofte fører til at jeg begrunner for dårlig.
Så jeg lurer på hvordan dere ville ha begrunnet/ført oppgave a og b.

Mine tanker:
Siden [tex]u(x)[/tex] er kontinuerlig kan bare [tex]u(x)[/tex] divergere når [tex]x\rightarrow\pm\infty[/tex].
Men siden [tex]\lim_{x\to\infty}u(x)=b[/tex], [tex]\lim_{x\to-\infty}u(x)=a[/tex] er ikke dette tilfellet, og [tex]u(x)[/tex] må være bundet [tex]\mid{u(x)}\mid\leq{M}=\sup_{x\in\mathbf{R}}\mid{u(x)}\mid[/tex]

Topp