Gustav » 16/07-2019 13:30
Anonymjente skrev:Det jeg ikkje forstår er dette:
"Fordi T er symmetrisk både om yz-planet og
xz-planet blir integralet over T av henholdsvis x og y lik null"
Hvorfor får vi bare: [tex]\int \int \int _{T} 1 dV[/tex]?
$\iiint_T 10x+6y+1 \,dV=10\iiint_T x\, dV+6\iiint_T y\, dV +\iiint_T 1\, dV$
$\iiint_T x\, dV =0$ fordi integrasjonsområdet er symmetrisk om yz-planet samtidig som at integranden er antisymmetrisk om yz-planet. Dvs. at ethvert bidrag til integralet i punkt (x,y,z) nulles ut av bidraget i punkt (-x,y,z). (Tenk her på integralet som en Riemannsum, dvs. summen av funksjonsverdiene til f(x,y,z)=x over alle infinitesimale bokser som utgjør området T)
Dette er bare en tredimensjonal versjon av følgende: $\int_{-a}^a x\,dx=0$ fordi integranden er antisymmetrisk om origo samtidig som at integrasjonsområdet er symmetrisk om origo.
Alternativt: La $T_{-}=\{p\in T: x\le 0\}$ og $T_+=T\setminus T_{-}$, slik at $\iiint_T x\, dV=\iiint_{T_-} x\, dV+\iiint_{T_+} x\, dV$. Ved å foreta variabelskiftet $x\mapsto -x$ i det første integralet til høyre, fås $\iiint_{T_-} x\, dV=-\iiint_{T_+} x\, dV$, så $\iiint_{T} x\, dV=0$
[quote="Anonymjente"]
Det jeg ikkje forstår er dette:
"Fordi T er symmetrisk både om yz-planet og
xz-planet blir integralet over T av henholdsvis x og y lik null"
Hvorfor får vi bare: [tex]\int \int \int _{T} 1 dV[/tex]?
[/quote]
$\iiint_T 10x+6y+1 \,dV=10\iiint_T x\, dV+6\iiint_T y\, dV +\iiint_T 1\, dV$
$\iiint_T x\, dV =0$ fordi integrasjonsområdet er symmetrisk om yz-planet samtidig som at integranden er antisymmetrisk om yz-planet. Dvs. at ethvert bidrag til integralet i punkt (x,y,z) nulles ut av bidraget i punkt (-x,y,z). (Tenk her på integralet som en Riemannsum, dvs. summen av funksjonsverdiene til f(x,y,z)=x over alle infinitesimale bokser som utgjør området T)
Dette er bare en tredimensjonal versjon av følgende: $\int_{-a}^a x\,dx=0$ fordi integranden er antisymmetrisk om origo samtidig som at integrasjonsområdet er symmetrisk om origo.
[b]Alternativt[/b]: La $T_{-}=\{p\in T: x\le 0\}$ og $T_+=T\setminus T_{-}$, slik at $\iiint_T x\, dV=\iiint_{T_-} x\, dV+\iiint_{T_+} x\, dV$. Ved å foreta variabelskiftet $x\mapsto -x$ i det første integralet til høyre, fås $\iiint_{T_-} x\, dV=-\iiint_{T_+} x\, dV$, så $\iiint_{T} x\, dV=0$