Finne verdi av funksjoner som krysser hverandre Skriv et svar


Dette spørsmålet er en metode for identifisering og hindring av automatiserte innsendinger.
Smil
:D :) :( :o :shock: :? 8-) :lol: :x :P :oops: :cry: :evil: :twisted: :roll: :wink: :!: :?: :idea: :arrow: :| :mrgreen:
BBCode er
[img] er
[flash] er AV
[url] er
Smil er
Emne
   

Utvid visningen Emne: Finne verdi av funksjoner som krysser hverandre

Re: Finne verdi av funksjoner som krysser hverandre

Innlegg Gjest24 » 01/10-2019 17:22

Dette er helt ukjente løsningsmetoder for meg. Jeg har faget matematikk 1 på universitet, så dette ble litt avansert.

Re: Finne verdi av funksjoner som krysser hverandre

Innlegg Mattegjest » 01/10-2019 17:13

Kan også løyse likninga " analytisk " ved å rekkeutvikle e[tex]^{a}[/tex]:

e[tex]^{a}[/tex] [tex]\approx[/tex] 1 + a + [tex]\frac{a^{2}}{2}[/tex] ( tek med berre tre ledd for å få ei "løysbar" likning )

Da endar vi opp med likninga

1 + a + [tex]\frac{a^{2}}{2}[/tex] = - a + 3

som har løysinga a [tex]\approx[/tex] 0.8

Re: Finne verdi av funksjoner som krysser hverandre

Innlegg Gjest24 » 01/10-2019 16:21

Så jeg har gått frem på riktig måte da? Forstår ikke hvordan jeg kan løse denne i det hele tatt.

Re: Finne verdi av funksjoner som krysser hverandre

Innlegg Mattegjest » 01/10-2019 15:57

Likninga
e[tex]^{a}[/tex] = -a + 3

kan løysast på minst to måtar:

1) grafisk løysing ved å framstille V.S. og H.S. grafisk i same koordinatsystem.

2) vi kan løyse likninga i CAS og får a [tex]\approx[/tex] 0.7921

Finne verdi av funksjoner som krysser hverandre

Innlegg Gjest24 » 01/10-2019 15:08

Tangenten til kurven y = e^(2-x) i x = 2 skjærer kurven y = e^x i et punkt der x = a.
i) Sett opp en likning, som er slik at vi kan finne verdien av a, ved å løse denne likningen.

Har ei oppgave som jeg ikke finner ut av. Har prøvd ved å finne ligningen til tangenten til y = e^(2-x). Fant ligningen t = -x+3. Siden denne skal krysse kurven y = e^x, satt jeg disse lik hverandre: -x+3 = e^x. Siden punktet er x=a, ble ligningen -a+3 = e^a.
Sitter igjen med e^a+a = 3, som jeg ikke klarer å løse. Hva gjør jeg feil?

Topp