Torsdagsulikhet Skriv et svar


Dette spørsmålet er en metode for identifisering og hindring av automatiserte innsendinger.
Smil
:D :) :( :o :shock: :? 8-) :lol: :x :P :oops: :cry: :evil: :twisted: :roll: :wink: :!: :?: :idea: :arrow: :| :mrgreen:
BBCode er
[img] er
[flash] er AV
[url] er
Smil er
Emne
   

Utvid visningen Emne: Torsdagsulikhet

Re: Torsdagsulikhet

Innlegg Gustav » 12/10-2017 16:14

Superb

Re: Torsdagsulikhet

Innlegg DennisChristensen » 12/10-2017 12:42

plutarco skrev:Løs følgende ulikhet for positive $x$:

$x(8\sqrt{1-x}+\sqrt{1+x})\leq 11\sqrt{1+x}-16\sqrt{1-x}$

Hint:
[+] Skjult tekst
Substituér $y=\frac{\sqrt{1-x}}{\sqrt{1+x}}$


Vi følger hintet og introduserer $y = \frac{\sqrt{1-x}}{\sqrt{1+x}}.$ Vi løser med hensyn på $x$:
$$\sqrt{1+x}y = \sqrt{1-x}$$ $$(1+x)y^2 = 1-x$$ $$x(1+y^2) = 1 - y^2$$ $$x = \frac{1-y^2}{1+y^2}.$$
Vi dividerer begge sider av ulikheten med $\sqrt{1+x} > 0$ og substituerer for $y$ og får:
$$\frac{1-y^2}{1+y^2}\left(8y + 1\right) \leq 11 - 16y$$
$$(1-y^2)(8y + 1) \leq (11-16y)(1+y^2)$$
$$4y^3 - 6y^2 + 12y - 5 \leq 0$$
$$(2y-1)(2y^2 - 2y+5) \leq 0$$
som har løsningen $y \leq \frac12$.
Vi får videre:
$$\frac{\sqrt{1-x}}{\sqrt{1+x}} \leq \frac12$$
$$\sqrt{1-x} \leq \frac12\sqrt{1+x}$$
$$1-x \leq \frac14(1+x)$$
$$x \geq \frac35.$$
Derav løsningen $\frac35 \leq x \leq 1$.

Torsdagsulikhet

Innlegg Gustav » 12/10-2017 08:35

Løs følgende ulikhet for positive $x$:

$x(8\sqrt{1-x}+\sqrt{1+x})\leq 11\sqrt{1+x}-16\sqrt{1-x}$

Hint:
[+] Skjult tekst
Substituér $y=\frac{\sqrt{1-x}}{\sqrt{1+x}}$

Topp