Integral Skriv et svar


Dette spørsmålet er en metode for identifisering og hindring av automatiserte innsendinger.
Smil
:D :) :( :o :shock: :? 8-) :lol: :x :P :oops: :cry: :evil: :twisted: :roll: :wink: :!: :?: :idea: :arrow: :| :mrgreen:
BBCode er
[img] er
[flash] er AV
[url] er
Smil er
Emne
   

Utvid visningen Emne: Integral

Re: Integral

Innlegg Kay » 10/03-2018 22:43

alund skrev:Integranden er en odde funksjon: hvis [tex]f(x)=x^{2n-1}\sqrt{1-x^2}[/tex], så er [tex]f(-x)=-f(x),\: \forall n\in \mathbb{Z}^+[/tex].
Derfor er [tex]\int_{-1}^0 f\text{d}x=-\int_0^1 f\text{d}x[/tex], slik at [tex]\int_{-1}^0 f\text{d}x+\int_0^1 f\text{d}x=\int_{-1}^1 f\text{d}x=0[/tex].


Det var en metode jeg ikke hadde tenkt på, ser riktig ut med mindre jeg går glipp av noe! Bra :D

Re: Integral

Innlegg alund » 10/03-2018 22:39

Integranden er en odde funksjon: hvis [tex]f(x)=x^{2n-1}\sqrt{1-x^2}[/tex], så er [tex]f(-x)=-f(x),\: \forall n\in \mathbb{Z}^+[/tex].
Derfor er [tex]\int_{-1}^0 f\text{d}x=-\int_0^1 f\text{d}x[/tex], slik at [tex]\int_{-1}^0 f\text{d}x+\int_0^1 f\text{d}x=\int_{-1}^1 f\text{d}x=0[/tex].

Integral

Innlegg Kay » 08/03-2018 18:18

Vis at [tex]\int_{-1}^{1}x^{2n-1}\sqrt{1-x^2} \ dx =0 \ \forall \ n \in \mathbb{Z} \geq 1[/tex]

Sorry hvis mengdenotasjonen er feil :?

Topp