Tallteori (VGS-nivå) Skriv et svar


Dette spørsmålet er en metode for identifisering og hindring av automatiserte innsendinger.
Smil
:D :) :( :o :shock: :? 8-) :lol: :x :P :oops: :cry: :evil: :twisted: :roll: :wink: :!: :?: :idea: :arrow: :| :mrgreen:
BBCode er
[img] er
[flash] er AV
[url] er
Smil er
Emne
   

Utvid visningen Emne: Tallteori (VGS-nivå)

Re: Tallteori (VGS-nivå)

Innlegg Gustav » 03/05-2019 21:31

Markus skrev:Anta først $x=y$, da får vi $x^2=x+a$, så $a=x^2-x$.
Anta så $x\neq y$, og observer at $(x+y)(x-y)=x^2-y^2=(y+a)-(x+a)=y-x$, som vil si at $x+y=-1$, og $a=x^2-y=x^2-(-1-x)=x^2+x+1$.

Dermed er $a=n^2-n$ og $a=n^2+n+1$ for $n \in \mathbb{Z}$.


Selvsagt helt riktig :)

Re: Tallteori (VGS-nivå)

Innlegg Markus » 02/05-2019 22:48

Anta først $x=y$, da får vi $x^2=x+a$, så $a=x^2-x$.
Anta så $x\neq y$, og observer at $(x+y)(x-y)=x^2-y^2=(y+a)-(x+a)=y-x$, som vil si at $x+y=-1$, og $a=x^2-y=x^2-(-1-x)=x^2+x+1$.

Dermed er $a=n^2-n$ og $a=n^2+n+1$ for $n \in \mathbb{Z}$.

Tallteori (VGS-nivå)

Innlegg Gustav » 26/04-2019 15:47

Gitt at $x^2=y+a$ og $y^2=x+a$.

Finn alle heltall $a$ slik at $x,y$ er heltall.

Topp