Vektor R1

Her kan du stille spørsmål vedrørende problemer og oppgaver i matematikk for videregående skole og oppover på høyskolenivå. Alle som føler trangen er velkommen til å svare.

Vektor R1

Innlegg ERE » 03/05-2019 19:38

Vektoroppgave gitt på terminprøve R1:

Det er oppgitt at:

Absoluttverdien til a vektor = 3
Absoluttverdien til b vektor = 5

a vektor multiplisert med b vektor = 7

Vektoren u = 5*a vektor + 7*b vektor

Finn absoluttverdien til u vektor.
ERE offline

Re: Vektor R1

Innlegg ErikAndre » 06/05-2019 15:44

Hva har du forsøkt selv?

Antar at dette gjelder i [tex]\mathbb{R}^2[/tex]. Da hjelper det å huske på at for alle vektorer [tex]a = (a_1, \, a_2)^T[/tex] og [tex]b = (b_1, \, b_2)^T[/tex] så er [tex]|a| = \sqrt{a_1^2 + a_2^2}[/tex], [tex]a \cdot b = a_1 b_1 + a_2 b_2[/tex], og [tex]\lambda a + \gamma b = (\lambda a_1 + \gamma b_1, \, \lambda a_2 + \gamma b_2)^T[/tex] hvor [tex]\lambda[/tex] og [tex]\gamma[/tex] er skalarer.
ErikAndre offline
Cayley
Cayley
Innlegg: 86
Registrert: 15/02-2016 20:21

Hvem er i forumet

Brukere som leser i dette forumet: Ingen registrerte brukere og 25 gjester