R2 v19 eksamen

Her kan du stille spørsmål vedrørende problemer og oppgaver i matematikk for videregående skole og oppover på høyskolenivå. Alle som føler trangen er velkommen til å svare.

Re: R2 v19 eksamen

Innlegg Gustav » 15/06-2019 00:03

Aleks855 skrev:Sitter og lager LF for denne eksamenen nå, og må bare spørre: Hva får man utdelt av formler på del 1?

Tenker spesielt på oppgaver som 6a+b på del 1, der man skal løse trig-likninger. Det er ren flaks at jeg husker at $\arcsin 1 = \frac\pi2$ (ok, denne kan drøftes på enhetssirkelen, så la gå) og $\arctan(-\sqrt3) = \frac{2\pi}{3}$ (litt verre).

Er det forventet at studentene skal huske disse?


Det er vel forventet at de skal klare å utlede de. Skal jeg uttale meg som lærer ser jeg ingen verdi i at en student memorerer slikt. Kan tillegge at jeg har et nokså ambivalent forhold til eksamensoppgaver generelt. På den ene siden er mesteparten som regel dørgende kjedelige og forutsigbare (og det gjelder jo også på høyere nivå enn vgs), på den annen side vil eksaminandene sikkert ha forutsigbare oppgaver, ellers ville vel (hadde man gitt dem orginale oppgaver hvert år) halvparten strøket og nesten ingen fått den sekseren de trenger for å komme inn på alskens studier. Jeg har litt sans for å iallfall gi én eller to orginale nøtter som kan skille klinten fra hveten. .
Gustav offline
Tyrann
Tyrann
Brukerens avatar
Innlegg: 4296
Registrert: 12/12-2008 12:44

Re: R2 v19 eksamen

Innlegg Aleks855 » 15/06-2019 00:46

Gustav skrev:
Aleks855 skrev:Sitter og lager LF for denne eksamenen nå, og må bare spørre: Hva får man utdelt av formler på del 1?

Tenker spesielt på oppgaver som 6a+b på del 1, der man skal løse trig-likninger. Det er ren flaks at jeg husker at $\arcsin 1 = \frac\pi2$ (ok, denne kan drøftes på enhetssirkelen, så la gå) og $\arctan(-\sqrt3) = \frac{2\pi}{3}$ (litt verre).

Er det forventet at studentene skal huske disse?


Det er vel forventet at de skal klare å utlede de. Skal jeg uttale meg som lærer ser jeg ingen verdi i at en student memorerer slikt. Kan tillegge at jeg har et nokså ambivalent forhold til eksamensoppgaver generelt. På den ene siden er mesteparten som regel dørgende kjedelige og forutsigbare (og det gjelder jo også på høyere nivå enn vgs), på den annen side vil eksaminandene sikkert ha forutsigbare oppgaver, ellers ville vel (hadde man gitt dem orginale oppgaver hvert år) halvparten strøket og nesten ingen fått den sekseren de trenger for å komme inn på alskens studier. Jeg har litt sans for å iallfall gi én eller to orginale nøtter som kan skille klinten fra hveten. .


Interessant. Må si meg enig. Mange av oppgavene er forholdsvis kjedelige, men man må få muligheten til å vise at man kan det kjedelige også. Ellers synes jeg et par av oppgavene i sesongens R2 var litt interessante.

Vet ikke helt om jeg ser en realistisk måte å forvente at en student utleder tangens-formelen på. Slik jeg ser det, så kan man kludre litt og oppdage at i en 30-60-90-trekant, så vil det vises at $\tan(60^\circ) = \sqrt3$, og deretter bruke at $\tan$-funksjonen er negativ i andre og fjerde kvadrant, men det virker som en tilfeldighet at man kommer dit når man sitter på eksamen. Og man må uansett huske hvordan forholdene var i en 30-60-90, så da er det jo nesten like realistisk å huske $\arctan(-\sqrt3)$.

Dennis' løsningsforslag syntes jeg var en fin vending, og bruker formelen for sinus av en sum, men krever at man husker tilsvarende formler for $\sin, \cos$.

Mulig jeg graver for dypt etter en realistisk løsning for en R2-student, eller er det bare jeg som undervurderer dem?
Bilde
Aleks855 offline
Rasch
Rasch
Innlegg: 5894
Registrert: 19/03-2011 15:19
Bosted: Trondheim

Re: R2 v19 eksamen

Innlegg Gustav » 15/06-2019 01:23

Måten å utlede det på blir jo å bruke enhetssirkelen: Vi har at $x^2+y^2=1$. Sett $\tan \theta = \frac{y}{x}=\sqrt{3}$. Innsatt for $y$ i første ligning fås $x=\frac12$. Voila! En katet som er halvparten av hypotenus $\Rightarrow$ 30-60-90-trekant! $\Rightarrow$ $\theta=60$ grader.

Neppe urealistisk resonnement for en god R2-elev etter min mening. (Å gjenkjenne 30-60-90-trekanter er jo noe som går igjen ofte i f.eks. matematikk R1)
Gustav offline
Tyrann
Tyrann
Brukerens avatar
Innlegg: 4296
Registrert: 12/12-2008 12:44

Re: R2 v19 eksamen

Innlegg Gjest » 15/06-2019 01:36

Aleks855 skrev:Sitter og lager LF for denne eksamenen nå, og må bare spørre: Hva får man utdelt av formler på del 1?

Tenker spesielt på oppgaver som 6a+b på del 1, der man skal løse trig-likninger. Det er ren flaks at jeg husker at $\arcsin 1 = \frac\pi2$ (ok, denne kan drøftes på enhetssirkelen, så la gå) og $\arctan(-\sqrt3) = \frac{2\pi}{3}$ (litt verre).

Er det forventet at studentene skal huske disse?


Det er meninga at man skal omforme uttrykket til et ledd med bare sinus, jf pensumet, og løse likningen deretter. Det er en standard r2-oppgave sånn sett. Er et delkapittel om det i boka.
Gjest offline

Re: R2 v19 eksamen

Innlegg Aleks855 » 15/06-2019 01:49

Gjest skrev:
Aleks855 skrev:Sitter og lager LF for denne eksamenen nå, og må bare spørre: Hva får man utdelt av formler på del 1?

Tenker spesielt på oppgaver som 6a+b på del 1, der man skal løse trig-likninger. Det er ren flaks at jeg husker at $\arcsin 1 = \frac\pi2$ (ok, denne kan drøftes på enhetssirkelen, så la gå) og $\arctan(-\sqrt3) = \frac{2\pi}{3}$ (litt verre).

Er det forventet at studentene skal huske disse?


Det er meninga at man skal omforme uttrykket til et ledd med bare sinus, jf pensumet, og løse likningen deretter. Det er en standard r2-oppgave sånn sett. Er et delkapittel om det i boka.


Men støter man ikke på samme problem?

Vi kan gange gjennom likninga med $\frac12$ og får $\frac12\sin(\pi x) + \frac{\sqrt3}{2}\cos(\pi x) = 0$, men bare hvis vi ser på lang vei at $\cos(\pi/3) = \frac12$ og $\sin(\pi/3) = \sqrt3 / 2$, som gjør at vi videre kan bruker formelen for sinus av en sum.
Bilde
Aleks855 offline
Rasch
Rasch
Innlegg: 5894
Registrert: 19/03-2011 15:19
Bosted: Trondheim

Re: R2 v19 eksamen

Innlegg Aleks855 » 15/06-2019 01:50

Mitt beste forsøk på en utledning som gir mening:

Bilde

30-60-90-regelen trenger man egentlig ikke huske. Den kan utledes lett fra en likesidet trekant med mer grunnleggende kunnskap.
Bilde
Aleks855 offline
Rasch
Rasch
Innlegg: 5894
Registrert: 19/03-2011 15:19
Bosted: Trondheim

Re: R2 v19 eksamen

Innlegg Gjest » 15/06-2019 01:55

Når det gjelder tanx = sqrt(3)/1 så får man jo en trekant med hypotenus 2. Da kan man bruke f eks sinx = sqrt(3)/2 til å finne x - som er det som er forventet å kunne utenat. Altså vinkelene til sin og cos ved sqrt(3)/2, 2/sqrt(2) og 1/2 (enhetssirkelen)
Gjest offline

Re: R2 v19 eksamen

Innlegg LektorNilsen » 15/06-2019 18:29

Aleks855 skrev:Sitter og lager LF for denne eksamenen nå, og må bare spørre: Hva får man utdelt av formler på del 1?

Tenker spesielt på oppgaver som 6a+b på del 1, der man skal løse trig-likninger. Det er ren flaks at jeg husker at $\arcsin 1 = \frac\pi2$ (ok, denne kan drøftes på enhetssirkelen, så la gå) og $\arctan(-\sqrt3) = \frac{2\pi}{3}$ (litt verre).

Er det forventet at studentene skal huske disse?



Man får ikke utdelt noen formler på del 1. Del 1 er uten hjelpemidler. Man har kun skrivesaker og linjal.
Det er imidlertid gjort klart på forhånd hvilke formler det forventes at elevene kan og som det kan kreves bruk av under del 1. Disse finner du i eksamensveiledningen som jeg legger ved her :) Oversiktene over formler til de ulike kursene starter på s.23.

Nå står det riktignok ikke kun formler, men også "ting" man skal kunne. F.eks. "Løse trigonometriske likninger", så da tar man utgangspunkt i at man må kjenne enhetssirkelen rimelig godt.
Vedlegg
Eksamensveiledning 2019.pdf
(1.25 MiB) 49 ganger
LektorNilsen offline
Dirichlet
Dirichlet
Innlegg: 199
Registrert: 02/06-2015 14:59

Re: R2 v19 eksamen

Innlegg Aleks855 » 16/06-2019 22:05

Godt poeng, Nilsen. Takk for hintet!

Ja, jeg vil si at hvis man gjør seg kjent med enhetssirkelen, samt det å kjapt tegne en 45-45-90 og en likesidet trekant, så skal man kunne utlede de sin/cos/tan-verdiene man trenger på strak arm uansett, så det er kanskje ikke så mye å forlange av en R2-elev.
Bilde
Aleks855 offline
Rasch
Rasch
Innlegg: 5894
Registrert: 19/03-2011 15:19
Bosted: Trondheim

Re: R2 v19 eksamen

Innlegg Gjest5 » 16/06-2019 23:59

Aleks855 skrev:
Gjest skrev:
Aleks855 skrev:Sitter og lager LF for denne eksamenen nå, og må bare spørre: Hva får man utdelt av formler på del 1?

Tenker spesielt på oppgaver som 6a+b på del 1, der man skal løse trig-likninger. Det er ren flaks at jeg husker at $\arcsin 1 = \frac\pi2$ (ok, denne kan drøftes på enhetssirkelen, så la gå) og $\arctan(-\sqrt3) = \frac{2\pi}{3}$ (litt verre).

Er det forventet at studentene skal huske disse?


Det er meninga at man skal omforme uttrykket til et ledd med bare sinus, jf pensumet, og løse likningen deretter. Det er en standard r2-oppgave sånn sett. Er et delkapittel om det i boka.


Men støter man ikke på samme problem?

Vi kan gange gjennom likninga med $\frac12$ og får $\frac12\sin(\pi x) + \frac{\sqrt3}{2}\cos(\pi x) = 0$, men bare hvis vi ser på lang vei at $\cos(\pi/3) = \frac12$ og $\sin(\pi/3) = \sqrt3 / 2$, som gjør at vi videre kan bruker formelen for sinus av en sum.


Er R2 elev som hadde eksamen i år. Slik jeg lærte å løse slike oppgaver med omgjøring til Sinus, er at du velger et tall A=sqrt(a^2+b^2) der a og b er tallet før sin og cos-leddet. Du trekker så A utenfor et parantes, og må da dele på A inni for at det fortsatt er samme utrykk. Du vil da alltid sitte igjen med to tall som er slik at den ene blir cos(x) og den andre sin(x) inni parantesen. Og i R2-oppgavene vil det alltid være enkle tall. Det forventes at man kan sin/cos 30-60-90-120...360, de er uansett ganske enkle å utlede.

https://campus.inkrement.no/1274113/4712
Lektor Thue fra Campus kan sikkert forklare det litt mer nøyaktig enn jeg kan :)
Gjest5 offline

Re: R2 v19 eksamen

Innlegg R2 vår 19 » 17/06-2019 15:15

Forhåndssensuren er lagt ut, ser ut som de veiledende poenggrensene er endret litt. Det kreves nå kun 43 poeng for en 5er, og 54 poeng for en 6er.
R2 vår 19 offline

Re: R2 v19 eksamen

Innlegg Judks » 19/06-2019 13:54

Karakteren har kommet på skolearena!
Judks offline

Re: R2 v19 eksamen

Innlegg Jonass1102 » 19/06-2019 14:07

R2 vår 19 skrev:Forhåndssensuren er lagt ut, ser ut som de veiledende poenggrensene er endret litt. Det kreves nå kun 43 poeng for en 5er, og 54 poeng for en 6er.


Hva med 2'ern?
Jonass1102 offline

Re: R2 v19 eksamen

Innlegg Torbjørn HH » 20/06-2019 12:02

Der kom karakteren min og jeg strøk.
Kommer til å klage selvfølgelig, men regnet med å vippe mellom 1 og 2 mtp jeg hadde regnet at jeg fikk 12 poeng akkurat riktig og er sikker på det. Men fikk ikke til så mye mer. Garantert 8 poeng i de to første derivasjon/integral oppgavene og fikk til de meste av vektoroppgavene i oppgave 5 som jeg er sikker på ga meg minst 4 poeng.
Håpet på at de kunne vippe meg over 12 poeng og siden grense var der på å bestå.

****** start på sommerferien
Torbjørn HH offline

Re: R2 v19 eksamen

Innlegg CircleOfLife » 20/06-2019 15:22

Første gang jeg er glad for en 2'er!
CircleOfLife offline

Forrige

Hvem er i forumet

Brukere som leser i dette forumet: Google Adsense [Bot] og 74 gjester