Side 1 av 1

R2 oppgave

InnleggSkrevet: 24/07-2019 18:52
roger222
Finn ekstremalpunktene til f(x):=x+cos(2x) x tilhærer<0,2Pi>

Skjønner ikke hvodan en får 4 ulike x verdier.
Jeg deriverer og setter funksjonen lik 0.
da får jeg sin(2x)=1/2 Dette går bare for 30 og 150 grader.

Re: R2 oppgave

InnleggSkrevet: 24/07-2019 19:46
Mattegjest
sin( 2x ) = 0.5 [tex]\Leftrightarrow[/tex] 2x = [tex]\frac{\pi }{6}[/tex] + n[tex]\cdot[/tex]2[tex]\pi[/tex]

[tex]\vee[/tex]

2x = [tex]\frac{5\pi }{6}[/tex] + n[tex]\cdot[/tex]2[tex]\pi[/tex]

Løys ut x ( del på 2 ). Velg så n = 0 og deretter n = 1 . Da får du 4 løysingar innafor grunnmengda G = [ 0 , 2pi >

Re: R2 oppgave

InnleggSkrevet: 24/07-2019 21:52
roger222
Mattegjest skrev:sin( 2x ) = 0.5 [tex]\Leftrightarrow[/tex] 2x = [tex]\frac{\pi }{6}[/tex] + n[tex]\cdot[/tex]2[tex]\pi[/tex]

[tex]\vee[/tex]

2x = [tex]\frac{5\pi }{6}[/tex] + n[tex]\cdot[/tex]2[tex]\pi[/tex]

Løys ut x ( del på 2 ). Velg så n = 0 og deretter n = 1 . Da får du 4 løysingar innafor grunnmengda G = [ 0 , 2pi >


Om jeg setter inn x=0 inn i sin(2x) får jeg 0, samme med 2Pi, da får jeg 4pi. Derfor også for 390 og 510 grader? Så x tilhører og v tilhører er 2 forskjellige ting?

Re: R2 oppgave

InnleggSkrevet: 24/07-2019 23:34
Mattegjest
Argumentet (vinkelen) x er oppgitt i absolutt vinkelmål ( jamfør definisjonsmengda ).


n = 0 gir desse nullpunkta til f' : x = [tex]\frac{\pi }{12}[/tex] og x = [tex]\frac{5\pi }{12}[/tex]
n = 1 gir x = [tex]\frac{\frac{\pi }{6}+2 \pi }{2}[/tex] = [tex]\frac{13\pi }{12}[/tex] og x =[tex]\frac{17\pi }{12}[/tex]