R2 feil....med hensyn til oppgave?

Her kan du stille spørsmål vedrørende problemer og oppgaver i matematikk for videregående skole og oppover på høyskolenivå. Alle som føler trangen er velkommen til å svare.

R2 feil....med hensyn til oppgave?

Innlegg geir72 » 25/07-2019 05:08

holder på med kapittelet Funksjonen f(x)=asin(kx)+bcos(kx)

Ut i fra det jeg har skjønt om a<0 skal A være negativ utenfor parantsen. Men jeg får ikke dette til å stemme med denne oppgaven.

f(x)=-2*sqrt(2)*sin(pi*x)+2*sqrt(2)*cos(pi*x) gjør om til sinusutrykk.

Jeg ender opp med A= -4 utenfor. Hva gjør jeg feil?
geir72 offline

Re: R2 feil....med hensyn til oppgave?

Innlegg Mattegjest » 25/07-2019 09:02

Kan lett vise at f( x ) = -2[tex]\sqrt{2}[/tex] ( sin([tex]\pi[/tex]x) - cos([tex]\pi[/tex]x) ) = -4 [tex]\cdot[/tex]sin( [tex]\pi[/tex]x - [tex]\frac{\pi }{4}[/tex])

For å få "positivt forteikn" på amplituden ( A = 4 ) , kan vi legge til eller trekkje frå ei halv omdreiing ( [tex]\pi[/tex] ) på

fasevinkelen( [tex]\varphi[/tex] ) ( hugs at -sin( v ) = sin(v + [tex]\pm[/tex] [tex]\pi[/tex] ) )


Ved å bruke ovanståande formel , får vi


f( x ) = -sin( [tex]\pi[/tex]x - [tex]\frac{\pi }{4}[/tex] ) = 4 sin([tex]\pi[/tex]x - [tex]\frac{\pi }{4}[/tex] + [tex]\pi[/tex] ) = 4 sin( [tex]\pi[/tex]x + [tex]\frac{3\pi }{4}[/tex] )
Mattegjest offline

Re: R2 feil....med hensyn til oppgave?

Innlegg Mattegjest » 25/07-2019 09:27

Gitt f( x ) = 4 sin([tex]\pi[/tex]x + [tex]\frac{3\pi }{4}[/tex] ) ( jamfør førre innlegg )


Denne funksjonen har periode p = [tex]\frac{2\pi }{\pi }[/tex] = 2

Fasevinkelen ([tex]\varphi[/tex] ) bør helst vere mindre enn perioden( p ). Sidan [tex]\frac{3\pi }{4}[/tex] > p = 2,
vil det vere meir korrekt å skrive

f( x ) = 4 sin( [tex]\pi[/tex]x + [tex]\frac{3\pi }{4}[/tex] - 2 )
Mattegjest offline

Re: R2 feil....med hensyn til oppgave?

Innlegg geir72 » 25/07-2019 19:53

Mattegjest skrev:Gitt f( x ) = 4 sin([tex]\pi[/tex]x + [tex]\frac{3\pi }{4}[/tex] ) ( jamfør førre innlegg )


Denne funksjonen har periode p = [tex]\frac{2\pi }{\pi }[/tex] = 2

Fasevinkelen ([tex]\varphi[/tex] ) bør helst vere mindre enn perioden( p ). Sidan [tex]\frac{3\pi }{4}[/tex] > p = 2,
vil det vere meir korrekt å skrive

f( x ) = 4 sin( [tex]\pi[/tex]x + [tex]\frac{3\pi }{4}[/tex] - 2 )


Ok, betyr det at Lektor thue har feil? Siden har fulgt videoene hans og der skriver han at om a>0 så er A posotiv. og motsatt for a<0 negativ. a er selve tegnet foran a*sin(k*x) ikke sant?
geir72 offline

Re: R2 feil....med hensyn til oppgave?

Innlegg geir72 » 25/07-2019 23:25

Mattegjest skrev:Gitt f( x ) = 4 sin([tex]\pi[/tex]x + [tex]\frac{3\pi }{4}[/tex] ) ( jamfør førre innlegg )


Denne funksjonen har periode p = [tex]\frac{2\pi }{\pi }[/tex] = 2

Fasevinkelen ([tex]\varphi[/tex] ) bør helst vere mindre enn perioden( p ). Sidan [tex]\frac{3\pi }{4}[/tex] > p = 2,
vil det vere meir korrekt å skrive

f( x ) = 4 sin( [tex]\pi[/tex]x + [tex]\frac{3\pi }{4}[/tex] - 2 )


Om jeg glemmer at fasevinkelen er større enn perioden. vil dette gi trekk på eksamen? Gitt at kurven er lik men funksjonsutrykket er forksjellig
geir72 offline

Re: R2 feil....med hensyn til oppgave?

Innlegg Mattegjest » 26/07-2019 05:47

Dette er ein formell feil ( ikkje ein logisk feil). Ein "pedantisk sensor" vil kanskje trekkje eit halvt poeng, men uansett vil

ein slik "feil" ikkje kunne trekkje ned på heilheitsinntrykket.
Mattegjest offline

Re: R2 feil....med hensyn til oppgave?

Innlegg geir72 » 26/07-2019 06:48

Mattegjest skrev:Dette er ein formell feil ( ikkje ein logisk feil). Ein "pedantisk sensor" vil kanskje trekkje eit halvt poeng, men uansett vil

ein slik "feil" ikkje kunne trekkje ned på heilheitsinntrykket.


Forresten en ting jeg lurer litt på. Når jeg skal regne den største verdien og minste verdien for x. Setter jeg disse verdiene inn i startuttrykket (feks cos(pi/2*x) eller sinus uttrykket som jeg regner meg frem til?
geir72 offline

Re: R2 feil....med hensyn til oppgave?

Innlegg Mattegjest » 26/07-2019 09:19

Gitt f( x ) = 4[tex]\cdot[/tex]sin([tex]\pi[/tex]x + [tex]\frac{3\pi }{4}[/tex] - 2 ) (jamfør tidlegare innlegg )

Her er det eine og aleine sinus-uttrykket som bestemmer ekstremalverdiane til funksjonen. Det betyr at
funksjonsverdien f( x ) vekslar mellom -4 og +4 . Dei tilhøyrande x-verdiane kan vi lett finne ved å studere grafen

til basisfunksjonen f( v ) = sin( v ) . Da ser vi at

1) ------- sin(v) har sin største verdi( 1 ) når v = [tex]\frac{\pi }{2}[/tex] + n [tex]\cdot[/tex]2[tex]\pi[/tex], n[tex]\in[/tex]Z

2) ......... sin(v) har sin minste verdi( -1 ) når v = -[tex]\frac{\pi }{2}[/tex] + n[tex]\cdot[/tex]2[tex]\pi[/tex]
Mattegjest offline

Re: R2 feil....med hensyn til oppgave?

Innlegg geir72 » 26/07-2019 19:47

geir72 skrev:
Mattegjest skrev:Dette er ein formell feil ( ikkje ein logisk feil). Ein "pedantisk sensor" vil kanskje trekkje eit halvt poeng, men uansett vil

ein slik "feil" ikkje kunne trekkje ned på heilheitsinntrykket.


Forresten en ting jeg lurer litt på. Når jeg skal regne den største verdien og minste verdien for x. Setter jeg disse verdiene inn i startuttrykket (feks cos(pi/2*x) eller sinus uttrykket som jeg regner meg frem til?


Ok takk, men om jeg skal finne hvor horizontale rammen altså langs x-aksen. Hvordan kan jeg finne minimum og maksimumsverdi i radianer? Får feks oppgitt x tilhører fra (-2,2) Hvordan vet jeg hvor mange omdreinger? Skal disse xverdiene settes inn i sinusutrykket jeg har regnet meg frem til eller ligningen jeg først får oppgitt feks cos(pi/2*x)
geir72 offline

Hvem er i forumet

Brukere som leser i dette forumet: Ingen registrerte brukere og 35 gjester