vektor r2

Her kan du stille spørsmål vedrørende problemer og oppgaver i matematikk for videregående skole og oppover på høyskolenivå. Alle som føler trangen er velkommen til å svare.

vektor r2

Innlegg geir72 » 31/07-2019 05:11

Retningen på vektorene skal ikke ha noe å si når en regner skalarprodukt, ikke sant?
geir72 offline

Re: vektor r2

Innlegg DennisChristensen » 31/07-2019 07:40

geir72 skrev:Retningen på vektorene skal ikke ha noe å si når en regner skalarprodukt, ikke sant?


Husk at $\vec{a}\cdot\vec{b} = |\vec{a}||\vec{b}|\cos \theta$, der $\theta$ er vinkelen mellom vektorene $\vec{a}$ og $\vec{b}$. Fra dette ser vi at skalarproduktet avhenger av lengden til $\vec{a}$ og $\vec{b}$, samt vinkelen imellom vektorene. Dersom du endrer retningene til vektorene uten å endre vinkelen, vil verdien til skalarproduktet være bevart.
DennisChristensen offline
Fermat
Fermat
Innlegg: 787
Registrert: 09/02-2015 23:28
Bosted: Oslo

Re: vektor r2

Innlegg geir72 » 31/07-2019 08:57

DennisChristensen skrev:
geir72 skrev:Retningen på vektorene skal ikke ha noe å si når en regner skalarprodukt, ikke sant?


Husk at $\vec{a}\cdot\vec{b} = |\vec{a}||\vec{b}|\cos \theta$, der $\theta$ er vinkelen mellom vektorene $\vec{a}$ og $\vec{b}$. Fra dette ser vi at skalarproduktet avhenger av lengden til $\vec{a}$ og $\vec{b}$, samt vinkelen imellom vektorene. Dersom du endrer retningene til vektorene uten å endre vinkelen, vil verdien til skalarproduktet være bevart.


Noe jeg ikke skjønner er denne oppgaven. Her virker det som om retningen på vektorene spiller en rolle...?
A(-1,-1,2) B(3,0,1) C(2,3,3) Finn vinkel B.

Når jeg bruker AB vektor istedenfor BA vektor ender jeg opp med cosB=-3/(sqrt(18)*sqrt(14)). I følge fasiten skal det ikke være minustegn der.
geir72 offline

Re: vektor r2

Innlegg josi » 31/07-2019 09:32

For to rette linjer som ikke står normalt på hverandre, velger man den minste vinkelen mellom dem, (her B som følgelig er mindre enn 90 grader) som den som gjelder som vinkel mellom linjene. Den andre vinkelen vil være 180 -B. Cos(180-B) = -cosB. Vinkelen mellom BA og BC er vinkel B, mens vinkelen mellom AB og BC er vinkelen 180- B. Dette forklarer hvorfor uttrykket for cosinus endrer fortegn når du skifter fra AB til BA.
josi offline

Re: vektor r2

Innlegg geir72 » 31/07-2019 10:24

josi skrev:For to rette linjer som ikke står normalt på hverandre, velger man den minste vinkelen mellom dem, (her B som følgelig er mindre enn 90 grader) som den som gjelder som vinkel mellom linjene. Den andre vinkelen vil være 180 -B. Cos(180-B) = -cosB. Vinkelen mellom BA og BC er vinkel B, mens vinkelen mellom AB og BC er vinkelen 180- B. Dette forklarer hvorfor uttrykket for cosinus endrer fortegn når du skifter fra AB til BA.


Ja ok, Har et paralellogram hvor en av sidenen er a=4 mens den andre siden b=5. Da er det naturlig å velge den vinkelen under 90 grader da? om jeg har forstått det riktig. Har valget mellom å ta cos60 eller cos120.
Dette er da vektor oppgave.
geir72 offline

Re: vektor r2

Innlegg josi » 31/07-2019 13:25

I parallellogrammet ABCD hvor vinkel A f.eks er 60 grader, så vil vinkel B være 120 grader. Ta utgangspunkt i vinkelens toppunkt, B , og bestem vinkelen mellom vektorene BA og BC = 120 grader.
josi offline

Hvem er i forumet

Brukere som leser i dette forumet: Google Adsense [Bot] og 37 gjester