Oppg.8 Del 1 S2 V19

Her kan du stille spørsmål vedrørende problemer og oppgaver i matematikk for videregående skole og oppover på høyskolenivå. Alle som føler trangen er velkommen til å svare.

Oppg.8 Del 1 S2 V19

Innlegg Aloevet » 27/10-2019 09:50

Hei, jeg trenger litt hjelp med oppgave 8b) på del 1 S2 V19. Man skal finne forventingsverdi u og standardavvik o ved hjelp av (z = (x-u)/o)-formelen og tabell over standard normalfordeling. Man får oppgitt to P-verdier, og dette blir etterhvert et likningsett med to ukjente.

Link til eksamen og løsningsforslag:
https://matematikk.net/side/S2_2019_v%C ... C3%98SNING

Her har fasit løst det som et likningsett med to ukjente. Jeg har gjort det på samme måte, med samme verdier som utgangspunkt. Fasit får svar o=0,14 og u=1,20, mens jeg får svar o=0,98 og u=2,88.

Når jeg plugger svaret mitt inn i likningsettet vi har brukt (-2 = (0,92-u)/o og -1,5 = (1,41-u)/o) ser det likevel riktig ut. Føler det er noe her jeg ikke har forstått helt?
Aloevet offline
Fibonacci
Fibonacci
Innlegg: 2
Registrert: 27/10-2019 09:28

Re: Oppg.8 Del 1 S2 V19

Innlegg Gjest » 27/10-2019 12:47

Hvis du plugger inn tallene dine i den andre likningen $\frac{1.41-\mu}{\sigma} = -1.5$ får du ikke riktig svar.
$\frac{1.41 - 2.88}{0.98} \approx -2.52 \neq -1.5$
Gjest offline

Re: Oppg.8 Del 1 S2 V19

Innlegg Aloevet » 27/10-2019 13:36

Gjest skrev:Hvis du plugger inn tallene dine i den andre likningen $\frac{1.41-\mu}{\sigma} = -1.5$ får du ikke riktig svar.
$\frac{1.41 - 2.88}{0.98} \approx -2.52 \neq -1.5$


Hei, takk for svar!

Føler meg litt dum nå, men skriver inn dette i kalkulator men får fortsatt -1,5 som svar :?
Vedlegg
cas.JPG
cas.JPG (13.98 KiB) Vist 492 ganger
Aloevet offline
Fibonacci
Fibonacci
Innlegg: 2
Registrert: 27/10-2019 09:28

Re: Oppg.8 Del 1 S2 V19

Innlegg Gjest » 27/10-2019 14:02

Aloevet skrev:
Gjest skrev:Hvis du plugger inn tallene dine i den andre likningen $\frac{1.41-\mu}{\sigma} = -1.5$ får du ikke riktig svar.
$\frac{1.41 - 2.88}{0.98} \approx -2.52 \neq -1.5$


Hei, takk for svar!

Føler meg litt dum nå, men skriver inn dette i kalkulator men får fortsatt -1,5 som svar :?


Nei her er det visst jeg som var dum. Vet ikke helt hvordan jeg klarte å gjøre den feilen, men ser ut som du har rett. Beklager det. Jeg prøver igjen også vil jeg gjerne påpeke at fasiten bruker positiv 1.5 mens du bruker -1.5. Kan det hende det er der feilen ligger?
Gjest offline

Re: Oppg.8 Del 1 S2 V19

Innlegg Mattegjest » 27/10-2019 15:06

Meiner at vi kan løyse dette problemet utan å setje opp eit likningssett.
Strukturerer problemet ved å skissere ein graf ( hjelpefigur ) som viser normalfordelinga til variablen Y.
Vi har at

P(Y [tex]\geq[/tex]1.41 = 0.0668 ) ⇔ P(Y ≤1.41 ) = 1 - 0.0668 = 0.9332

Ei normalfordeling med sannsyn 0.9332 svarar til z = 1.5 ( jamfør tabell )

Da veit vi at Yobs = 1.41 ligg 1.5 σ til høgre for symmetrilinja ( Y = E( Y ) = μ)

P(Y [tex]\leq[/tex] 0.92 ) = 0.0228 svarar til z = -2 ( jamfør tabell )

Yobs = 0.92 ligg 2 σ( standardavvik ) til venstre for symmetrilinja.

Hjelpefiguren vår viser då at

( 1.5 - ( -2 ) )[tex]\sigma[/tex]
= 1.41 - 0.92 = 0.49 som gir

σ= 0.493.5 = 0.14

μ ( som ligg på symmetrilinja ) = 1.41 - 1.5 σ = 1.41 - 1.5⋅0.14 = 1.2

eller

μ = 0.92 + 2 σ = 0.92 + 2 0.14 = 1.2
Mattegjest offline

Hvem er i forumet

Brukere som leser i dette forumet: Google Adsense [Bot] og 42 gjester