Implisitt derivasjon

Her kan du stille spørsmål vedrørende problemer og oppgaver i matematikk for videregående skole og oppover på høyskolenivå. Alle som føler trangen er velkommen til å svare.

Implisitt derivasjon

Innlegg Oskaroskar » 03/12-2019 19:34

f er en funksjon av en variabel og a og b er kons.
Likningen er x - az = f(y - bz)
Skal anta at z er en deriverbar funksjon av x og y og vise at z tilfredstiller likningen az'(x) + bz'(y) = 1
Der z'(x) betyr den partiell deriverte mhp. X (greier ikke nedfelle).

Jeg klarer å finne de partiell deriverte men når jeg skal legge sammen az'(x) + bz'(y) stagnerer det helt :s ser at jeg sliter med å isolere den deriverte på en side.kan noen hjelpe meg? Føler seg så sinnsykt dum når boka sier at det bare er å ta løsningen å utføre enkel algebra

Mhp. x --> 1 - az'(x) = f'(y - bz)(-bz'(x))

Mhp. y --> -az'(y) = f'(y - bz)(1 - bz'(y))

az'(x) = 1 - f'(y - bz)(-bz'(x))

bz'(y) = az'(y)/f'(y-bz) + 1
bz'(y) = (az'(y) + f'(y - bz))/f'(y-bz)

az'(x) + bz'(y) = 1 - f'(y - bz)(-bz'(x)) + (az'(y) + f'(y - bz))/f'(y-bz)

Takk :)
Vedlegg
1575403146185343375483.jpg
1575403146185343375483.jpg (1.27 MiB) Vist 145 ganger
Sist endret av Oskaroskar den 03/12-2019 20:59, endret 2 ganger.
Oskaroskar offline
Noether
Noether
Innlegg: 28
Registrert: 24/09-2019 15:03

Re: Implisitt derivasjon

Innlegg josi » 03/12-2019 20:49

Mhp. x --> 1 - az'(x) = f'(y - bz)(-bz'(x))

Mhp. y --> -az'(y) = f'(y - bz)(1 - bz'(y))

Her blir det lettere regning ved å sette

[tex]-f´(y-bz) = \frac{1-az`_y}{bz´_x}[/tex]

og

[tex]-f´(y-bz) = \frac{az´_y}{1-bz´_y}[/tex]

Ved kryssmultiplkasjon får du svaret.
josi offline

Hvem er i forumet

Brukere som leser i dette forumet: Google Adsense [Bot], MSN [Bot] og 29 gjester