vektorar

Her kan du stille spørsmål vedrørende problemer og oppgaver i matematikk for videregående skole og oppover på høyskolenivå. Alle som føler trangen er velkommen til å svare.

vektorar

Innlegg geil » 30/12-2019 11:25

Her er ei utfordring i R2 Sigma

Fasiten seier
a) t = 3, b) t = 3 og c) t = 1/2

Dette får eg ikkje til å stemme, eg har løyst oppgåvene nedanfor for og får heilt andre svar.

Er det nokon andre som har løyst desse oppgåvene og fått fasit svar eller får dokke det same som eg.
Hadde vore supert om nokon kunne sjå på oppgåven og gi meg eit svar om eg har rekna feil eller gjort det riktig.

Utfordring 2.19
a) Bestemm t slik at [1, 2, t] x [2, 3, 3] ⊥ [2, 2, 2]

(_2^1) _( 3)^( 2) 〖⤨ 〗_( 3)^( t) 〖⤨ 〗_( 2)^( 1) 〖⤨ 〗_( 3)^( 2) 〖 〗_( 3)^( t)

[2 · 3 - 3 · t, t · 2 – 3 · 1, 1 · 3 - 2 · 2] = [6 – 3t, 2t - 3 , 3 - 4] = [6 – 3t, 2t - 3, -1]
[6 – 3t, 2t - 3, -1] · [2, 2, 2] = 0 ⇒ ((6 – 3t) · 2 + (2t - 3) · 2 + (- 1) · 2) = 0
(12 – 6t + 4t – 6 – 2) = 0 ⇒ - 2t + 4 = 0 ⇒ 2t = 4 ⇒ t = 2
b) Bestemm t slik at [1, 2, t] x [2, 2, 1] ∥ [2, - 2, 1]

(_2^1) _( 2)^( 2) 〖⤨ 〗_( 1)^( t) 〖⤨ 〗_( 2)^( 1) 〖⤨ 〗_( 2)^( 2) 〖 〗_( 1)^( t)

[(2 · 1 - 2 · t), (t · 2 – 1 · 1), (1 · 2 - 2 · 2)] = [(2 – 2t), (2t – 1), 2 - 4] = [2 – 2t, 2t - 1, -2]

[(2 – 2t), (2t – 1), -2] · [2, - 2, 1] = 0

(_2^(2-2t)) _( - 2)^( 2t-1) 〖⤨ 〗_( 1)^( -2) 〖⤨ 〗_( 2)^( 2-2t) 〖⤨ 〗_( - 2)^( 2t-1) 〖 〗_( 1)^( -2)

[((2t – 1)· 1) – ((-2)· (- 2)), ((- 2· 2) – (1· (2 - 2t)), ((2 – 2t)· (- 2) – (2· (2t - 1)))] = 0
[(2t – 1 – 4), - 4 - 2 + 2t, – 4 + 4t – 4t + 2] = 0
(2t -5 + 2t – 6 – 2) = 0
4t = 13
t = 13/4

c) Bestemm t slik at |n ⃗ | = √2 når n ⃗ = [1, 1, t] x [2, 2, 1].

(_2^1) _( 2)^( 1) 〖⤨ 〗_( 1)^( t) 〖⤨ 〗_( 2)^( 1) 〖⤨ 〗_( 2)^( 1) 〖 〗_( 1)^( t)

[(1 · 1 - 2 · t), (t · 2 – 1 · 1), (1 · 2 - 2 · 1)] = [(1 – 2t), (2t – 1), 2 - 2] = [1 – 2t, 2t - 1, 0]

|n ⃗ | = √((1-2t)^2+ (2t-1)^2+ (0)^2 )= √2
= √(1-4t+ 〖4t〗^2+ 〖4t〗^2-4t+1+ 0)= √2
= (√(〖8t〗^2-8t+2))^2 = (√2)^2
= 〖8t〗^2-8t+2 = 2
= 〖8t〗^2-8t = 0
= 8t (t – 1) = 0

8t = 0 ˄ t – 1 = 0
t = 0 ˄ t = 1

t = 0 er inga løysing

t = 1

[1 – 2 · 1, 2 · 1 - 1, 0] = [- 1, 1. 0]

|n ⃗ | = √(1^2+ 1^2+ (0)^2 )= √(1+ 1) = √2
geil offline
geil offline

Hvem er i forumet

Brukere som leser i dette forumet: MSN [Bot] og 296 gjester