R1 Logaritmer

Her kan du stille spørsmål vedrørende problemer og oppgaver i matematikk for videregående skole og oppover på høyskolenivå. Alle som føler trangen er velkommen til å svare.

R1 Logaritmer

Innlegg mattegjesten02 » 20/02-2020 17:43

Jeg lurer litt på angående følgende likning:

(Ln(x+2))^2 + ln(x+2) = 2

Jeg vet at ln(x+2) ikke kan gjøres og ganges ut, men kan jeg da bruke at (u=ln(x+2) og sette inn u^2+u-2=0 ?
mattegjesten02 offline
Pytagoras
Pytagoras
Innlegg: 6
Registrert: 20/02-2020 17:20

Re: R1 Logaritmer

Innlegg Aleks855 » 20/02-2020 18:30

Jepp, du tenker helt riktig.

Fortsett den tankegangen, og si fra hvis du står fast videre.
Bilde
Aleks855 offline
Rasch
Rasch
Innlegg: 6085
Registrert: 19/03-2011 15:19
Bosted: Trondheim

Re: R1 Logaritmer

Innlegg mattegjesten02 » 25/02-2020 09:40

Jeg har kommet frem til at :

( u - 1) (u + 2 ) = 0

u - 1 = 0 v u + 2 = 0
ln(x+2) - 1 = 0 v ln(x+2) + 2 = 0
ln(x+2) = 1 v ln(x+2) = -2

Videre står jeg fast, ser at u+2=0 er ugyldig. Men kan jeg gå videre med u - 1 = 0 ?
mattegjesten02 offline
Pytagoras
Pytagoras
Innlegg: 6
Registrert: 20/02-2020 17:20

Re: R1 Logaritmer

Innlegg Mattegjest » 25/02-2020 09:50

Føresetnad for løysing: x + 2 > 0 ( ln-funksjonen verkar berre på positive tal )

ln( x + 2 ) = 1 [tex]\Leftrightarrow[/tex] x + 2 = ( pr. def. ) e[tex]^{ln( x + 2 ))}[/tex] = e[tex]^{1}[/tex] = e [tex]\Leftrightarrow[/tex] x = e - 2
Mattegjest offline

Re: R1 Logaritmer

Innlegg Kristian Saug » 25/02-2020 11:21

OBS!

Vi har to løsninger!

Riktig at

[tex]ln(x+2)=1[/tex]
[tex]\vee[/tex]
[tex]ln(x+2)=-2[/tex]

Da har vi

[tex]ln(x+2)=1=ln(e)[/tex]
[tex]x+2=e[/tex]
[tex]x=e-2[/tex]

[tex]\vee[/tex]

[tex]ln(x+2)=-2[/tex]

[tex]e^{ln(x+2)}=e^{(-2)}[/tex]
[tex]x+2=\frac{1}{e^{2}}[/tex]
[tex]x=\frac{1}{e^{2}}-2[/tex]

[tex]ln(x+2)=ln(\frac{1}{e^{^{2}}}-2+2) = ln(\frac{1}{e^{2}})[/tex].
[tex]\frac{1}{e^{2}}> 0[/tex] !


Se vedlegg for visualisering.
Vedlegg
ln - funksjon.odt
(41.73 KiB) 8 ganger
Kristian Saug offline
Weierstrass
Weierstrass
Innlegg: 473
Registrert: 11/11-2019 18:23

Hvem er i forumet

Brukere som leser i dette forumet: Ingen registrerte brukere og 292 gjester