vektorar

Her kan du stille spørsmål vedrørende problemer og oppgaver i matematikk for videregående skole og oppover på høyskolenivå. Alle som føler trangen er velkommen til å svare.

Re: vektorar

Innlegg geil » 25/03-2020 10:08

Hei!
Beklager!
har lagt ut ein liten feil i starten på svaret i d)
har set inn retningsvektoren i staden for einingsvektoren sjå nedafor

Har set inn retningsvektor
r ⃗ = - 1 · [3, 4, 0] = [ - 3, - 4, 0]

skule sette inn einingsvektoren
e ⃗ = 1/|t ⃗ | · r ⃗ = 1/√(〖(-3)〗^2+(-〖4)〗^2 ) · [-3, -4, 0] = 1/√(9 + 16) · [-3, -4, 0] = 1/√25 · [-3, -4, 0] = 1/5 · [-3, -4, 0]
= [- 3/5,- 4/5,0]

Det er difor feil i linja
[x,y,0] = [36/25,48/25,0] + 13/5 · [ - 3, - 4, 0]

Den skal vere
[x,y,0] = [36/25,48/25,0] + 13/5 · [- 3/5,- 4/5,0]



EC-vektor peikar nedover mot venstre i xy-planet , dvs. denne vektoren har negativ
x-koordinat og negativ y-koordinat. Sidan EC no ligg på skjeringslinja
mellom β og xy-planet , blir retningsvektor

r ⃗ = - 1 · [3, 4, 0] = [ - 3, - 4, 0]

Einingsvektoren:

e ⃗ = 1/|t ⃗ | · r ⃗ = 1/√(〖(-3)〗^2+(-〖4)〗^2 ) · [-3, -4, 0] = 1/√(9 + 16) · [-3, -4, 0] = 1/√25 · [-3, -4, 0] = 1/5 · [-3, -4, 0]
= [- 3/5,- 4/5,0]

(EC) ⃗ = 13/5 · e ⃗
= 13/5 · [- 3/5,- 4/5,0]
= [- 39/25,-52/25,0]

(0E) ⃗ = [36/25,48/25,0]

(OC) ⃗ = (0E) ⃗ + (EC) ⃗ = (0E) ⃗ + 13/5 · e ⃗
(OC) ⃗ = [36/25,48/25,0] + 13/5 · [- 3/5,- 4/5,0]
= [36/25,48/25,0] + [- 39/25,-52/25,0]
= [36/25 - 39/25,48/25 -52/25,0]
= [- 3/25,- 4/25,0]

C (- 3/25,-4/25,0)
geil offline

Re: vektorar

Innlegg Mattegjest » 25/03-2020 10:16

Flott !
Eg skulle akkurat til å gjere deg merksam på denne feilen, men så kom du meg i forkjøpet.

Dette er nok ei stadfesting på at du har " full kontroll ".
Mattegjest offline

Re: vektorar

Innlegg geil » 25/03-2020 11:04

Takk for det, men hadde ikkje fått full kontroll utan hjelp frå
Dokke veileiere.

Har etter tips frå dokke veileiere løyst oppgåve d på
alternativ metode.

Sjå min løysing nedafor håper den kan vere til hjelp for andre som
har prøvd seg på denne oppgåva.

Alternativ løysing:

Skjeringslinja mellom planet β og xy-planet har retningsvektor [3, 4, 0], jamfør info frå del b.
Då EC ligg på skjeringslinja, kan vi skrive

(EC) ⃗ = t · [3, 4, 0]

|(EC) ⃗ | = √(〖(3t)〗^2+ 〖(4t)〗^2+ 0^2 ) = √(〖9t〗^2+ 〖16t〗^2+ 0^2 ) = √(〖25t〗^2 ) = |5t| = 5 · |t|

Finne t:

|(EC) ⃗ | = 13/5 ⇒ 5|t|= 13/5 ⇒ 25|t| = 13 ⇒ |t| = 13/25 ⇒ t = 13/25 ˄ t = - 13/25

Fordi (EC) ⃗ peikar nedover mot venstre i xy-planet vel vi då

t = - 13/25

Set inn i (EC) ⃗

(EC) ⃗ = - 13/25 ·[3, 4, 0] = [- 39/25,-52/25,0]

(0E) ⃗ har vi funne i b.

(0E) ⃗ = [36/25,48/25,0]

Finn punktet C (x, y, z)

(OC) ⃗ = (0E) ⃗ + (EC) ⃗
= [36/25,48/25,0] + [- 39/25,-52/25,0]
= [36/25 - 39/25,48/25 -52/25,0]
= [- 3/25,- 4/25,0]

C (- 3/25,-4/25,0)

Kva blir no z-koordinaten til toppunktet.?

Finn vinkelen mellom α og xy-planet.

D (0, 3, 5)

(r_z ) ⃗ = [0, 0, 1]

|(n_α ) ⃗ | = |[3,4,12]| = 13
|(r_x ) ⃗ | = |[1,0,0]| = √(1^2+ 0^2+ 0^2 ) = √(1+ 0+ 0) = √1 = 1

(n_α ) ⃗ · (r_z ) ⃗ = [3, 4, 12] · [0, 0, 1] = (3 · 0 + 4 · 0 + 12 · 1) = 3 + 0 + 12 = 12

cos ((n_α ) ⃗ , (r_z ) ⃗) = ((n_α ) ⃗ · (r_z ) ⃗)/(|(n_α ) ⃗ | · |(r_z ) ⃗ | ) = 12/(13 · 1) = 12/13

Fordi z-koordinaten til toppunktet D vil minke når vi dreier får vi

5 · cos ((n_α ) ⃗ , (r_z ) ⃗) = 5 · 12/13 = 60/13

D_z = 60/13

Då seie eg meg ferdig med denne oppgåva som har vore svært nyttig å løyse.
Den har gitt meg ein mykje bedre forståing av vektorrekning.
geil offline

Re: vektorar

Innlegg Mattegjest » 25/03-2020 11:39

No meistrar du begge løysingsmåtane vedr. del d.
Da burde du også vere godt rusta for å takle liknande problem på eksamensdagen 22. mai d.å. Lukke til !
Mattegjest offline

Forrige

Hvem er i forumet

Brukere som leser i dette forumet: MSN [Bot] og 23 gjester