Potenser og standardform

Her kan du stille spørsmål vedrørende problemer og oppgaver i matematikk for videregående skole og oppover på høyskolenivå. Alle som føler trangen er velkommen til å svare.

Potenser og standardform

Innlegg snafu » 24/03-2020 09:37

Hei,

Er ny på forumet her. Er det ok å stille spørsmål om utregninger her? Håper det :)

Det er en oppgave rundt potenser og standardform.
Er det noen som kan si meg fremgangsmåten (utregningen) på:

1)

3x^3 * 5x^2t^4 * 3x^2t^2 - 9x^7 * 5t^6

selv har jeg tenkt: 3*5*2*3*2*x^3+2+2*t^4+2 - 9*5*x^7 * t^6

So far?

2)

a^m / a^n = a^m-n (hvor oppgaven er; "Vis utledningen av regelen"

Takk
Sist endret av snafu den 24/03-2020 11:03, endret 1 gang
snafu offline
Fibonacci
Fibonacci
Innlegg: 1
Registrert: 24/03-2020 09:30

Re: Potenser og standardform

Innlegg planke » 31/03-2020 17:44

[tex]3x^3 5x^2t^4 3x^2t^2 - 9x^7 5t^6[/tex]
[tex]=3*5*3 x^{3+2+2} *t^{4+2} - 9*5 x^7 t^6[/tex]
[tex]=45 x^7 t^6 - 45 x^7 t^6[/tex]
[tex]=0[/tex]
Ga det mening?
Undervisningsvideoer i fysikk, kjemi og naturfag mm finner du på:
http://www.lektorthomas.wordpress.com
planke online
Noether
Noether
Innlegg: 35
Registrert: 28/03-2020 09:12

Re: Potenser og standardform

Innlegg Lurlei » 31/03-2020 22:34

2)

[tex]\frac{a^{m}}{a^{n}} = \frac{\overbrace{a \cdot a \cdot ... \cdot a}^{m-ganger}}{\underbrace{a \cdot a \cdot ... \cdot a}_{n-ganger}} = \frac{\overbrace{a \cdot a \cdot ... \cdot a}^{m-ganger}}{\underbrace{a \cdot a \cdot ... \cdot a}_{m-ganger}\cdot \underbrace{a \cdot a \cdot ... \cdot a}_{n-m-ganger}} = \frac{1}{\underbrace{a \cdot a \cdot ... \cdot a}_{n-m-ganger}} =\frac{1}{a^{n-m}}=a^{-(n-m)}=a^{-n+m}=a^{m-n}[/tex]
Lurlei online
Fibonacci
Fibonacci
Innlegg: 2
Registrert: 31/03-2020 21:21

Hvem er i forumet

Brukere som leser i dette forumet: MSN [Bot] og 286 gjester