Kvadratrot

Her kan du stille spørsmål vedrørende problemer og oppgaver i matematikk for videregående skole og oppover på høyskolenivå. Alle som føler trangen er velkommen til å svare.

Kvadratrot

Innlegg mimmelimmen » 24/03-2020 20:21

Yo!
Boka er ikke veldig tydelig på hvordan man regner ut følgende regnestykke og trenger en liten innføring, da det er flere oppgaver jeg ikke får til

√12 - √3

Jeg prøvde meg på = √4 * √3 - √3
Men jeg kommer meg egentlig ikke videre derfra
mimmelimmen offline
Pytagoras
Pytagoras
Innlegg: 10
Registrert: 24/03-2020 14:59

Re: Kvadratrot

Innlegg Aleks855 » 24/03-2020 20:23

Du er nesten i boks. Hvis jeg påpeker at begge ledd inneholder faktoren $\sqrt 3$, ser du hvordan du kan gjøre en siste faktorisering?
Bilde
Aleks855 offline
Rasch
Rasch
Innlegg: 6075
Registrert: 19/03-2011 15:19
Bosted: Trondheim

Re: Kvadratrot

Innlegg mimmelimmen » 24/03-2020 20:27

Aleks855 skrev:Du er nesten i boks. Hvis jeg påpeker at begge ledd inneholder faktoren $\sqrt 3$, ser du hvordan du kan gjøre en siste faktorisering?


Nei dessverre, det er akkurat den biten jeg ikke skjønner :lol:
mimmelimmen offline
Pytagoras
Pytagoras
Innlegg: 10
Registrert: 24/03-2020 14:59

Re: Kvadratrot

Innlegg mimmelimmen » 24/03-2020 20:32

2√3 - 1√3 = √3

?
mimmelimmen offline
Pytagoras
Pytagoras
Innlegg: 10
Registrert: 24/03-2020 14:59

Re: Kvadratrot

Innlegg Aleks855 » 24/03-2020 20:33

Faktoriserer ut $\sqrt3$ og får $\sqrt4\sqrt3 - \sqrt3 = \sqrt3(\sqrt4-1)$

Det eneste som gjenstår nå er å forkorte det som står inni parentesen. Jeg antar at $\sqrt4$ ringer ei bjelle?
Bilde
Aleks855 offline
Rasch
Rasch
Innlegg: 6075
Registrert: 19/03-2011 15:19
Bosted: Trondheim

Re: Kvadratrot

Innlegg Aleks855 » 24/03-2020 20:33

mimmelimmen skrev:2√3 - 1√3 = √3

?


Jepp!
Bilde
Aleks855 offline
Rasch
Rasch
Innlegg: 6075
Registrert: 19/03-2011 15:19
Bosted: Trondheim

Re: Kvadratrot

Innlegg mimmelimmen » 24/03-2020 20:47

Aleks855 skrev: Jepp!



yeeii!! Sliter dog fortsatt med denne :

(√3 - 1) (√3 + 1)

Hvordan er fremgangsmåten her?
mimmelimmen offline
Pytagoras
Pytagoras
Innlegg: 10
Registrert: 24/03-2020 14:59

Re: Kvadratrot

Innlegg Aleks855 » 24/03-2020 20:54

https://udl.no/v/matematikk-blandet/alg ... tninga-144

Se denne videoen. Hvis du står fast etter det, si fra.
Bilde
Aleks855 offline
Rasch
Rasch
Innlegg: 6075
Registrert: 19/03-2011 15:19
Bosted: Trondheim

Re: Kvadratrot

Innlegg mimmelimmen » 25/03-2020 13:38

Aleks855 skrev:https://udl.no/v/matematikk-blandet/algebra/tredje-kvadratsetning-konjugatsetninga-144

Se denne videoen. Hvis du står fast etter det, si fra.


Hjertelig takk, da fikk jeg riktig svar!
Kunne du også sjekke om jeg tenker riktig her?

_ 2__
√3 - 1


= __2 * √3__
√3 - 1 *√3

= __2 * √3__
........ -1 ...... Videre Dividerer jeg alle ledd med (-2) og får:

= √3 + 1
mimmelimmen offline
Pytagoras
Pytagoras
Innlegg: 10
Registrert: 24/03-2020 14:59

Re: Kvadratrot

Innlegg Mattegjest » 25/03-2020 13:57

Hint: Prøv å utvide brøken slik at du blir kvitt rotteiknet under brøkstreken ( rasjonal nemnar )
Verktøy: Konjugatsetninga: ( a - b )( a + b ) = a^2 - b^2
Mattegjest offline

Re: Kvadratrot

Innlegg mimmelimmen » 26/03-2020 10:44

Mattegjest skrev:Hint: Prøv å utvide brøken slik at du blir kvitt rotteiknet under brøkstreken ( rasjonal nemnar )
Verktøy: Konjugatsetninga: ( a - b )( a + b ) = a^2 - b^2


Hei! Takk for tips! For hvilke av oppgavene er det du mener?
mimmelimmen offline
Pytagoras
Pytagoras
Innlegg: 10
Registrert: 24/03-2020 14:59

Re: Kvadratrot

Innlegg Aleks855 » 26/03-2020 10:47

Han mener den siste du posta.
Bilde
Aleks855 offline
Rasch
Rasch
Innlegg: 6075
Registrert: 19/03-2011 15:19
Bosted: Trondheim

Re: Kvadratrot

Innlegg mimmelimmen » 28/03-2020 13:29

Dette fikk jeg ikke til.

__2__
√3 - 1

____2____
(√3 -1)(√3+1)

______2_______
√3^2 + √3 - √3 - 1

___2___
√3^2 - 1

Og om det er riktig, hva skal jeg gjøre videre når svaret skal være :√3 + 1
mimmelimmen offline
Pytagoras
Pytagoras
Innlegg: 10
Registrert: 24/03-2020 14:59

Re: Kvadratrot

Innlegg Kristian Saug » 28/03-2020 13:48

Hei,

[tex]\frac{2}{\sqrt{3}-1}=\frac{2\cdot (\sqrt{3}+1)}{(\sqrt{3}-1)\cdot (\sqrt{3}+1)}=\frac{2\cdot (\sqrt{3}+1)}{3-1}=\frac{2(\sqrt{3}+1)}{2}=\sqrt{3}+1[/tex]
Kristian Saug offline
Weierstrass
Weierstrass
Innlegg: 464
Registrert: 11/11-2019 18:23

Re: Kvadratrot

Innlegg mimmelimmen » 28/03-2020 14:55

Kristian Saug skrev:Hei,

[tex]\frac{2}{\sqrt{3}-1}=\frac{2\cdot (\sqrt{3}+1)}{(\sqrt{3}-1)\cdot (\sqrt{3}+1)}=\frac{2\cdot (\sqrt{3}+1)}{3-1}=\frac{2(\sqrt{3}+1)}{2}=\sqrt{3}+1[/tex]


Såklart! Takk! :oops:
mimmelimmen offline
Pytagoras
Pytagoras
Innlegg: 10
Registrert: 24/03-2020 14:59

Neste

Hvem er i forumet

Brukere som leser i dette forumet: Google Adsense [Bot], MSN [Bot] og 278 gjester