Side 1 av 1

krumming og vendepunkt

InnleggSkrevet: 26/11-2003 16:38
brukernavn01
g(x)=(1/3)x^3+2x^2

Jeg skal finne vendepunktet for grafen.

jeg har funnet ut at i punktet er x=-2

Svaret er (-2, 16/3)

Førstederiverte er x^2+4x
Andrederiverte er 2x+4

InnleggSkrevet: 26/11-2003 16:43
oro2
Det er riktig det.

InnleggSkrevet: 26/11-2003 16:45
brukernavn01
Hehe, jeg glemte problemet mitt.

Kan noen vise meg utregningen for y?

InnleggSkrevet: 26/11-2003 16:49
oro2
Utregning for y?

Skriver hele metoden.

For å finne vendepunktet setter du den andrederiverte lik 0.
Altså 2x+4 = 0. Dette gir x = -2.

Så setter du dette inn i g(x), og dette gir g(-2)=16/3

InnleggSkrevet: 26/11-2003 16:59
brukernavn01
Men da skjønner jeg veldig lite ut i fra utregningsmetoden jeg ble presentert i boka.
f(x)=x^3-6x^2

Førstederivert er 3x^2-12x
Andrederivert er 6x-12

Punktet (x,y)

x=2

Det er greit, det forstår jeg, men så sier de...
Siden f(1)=-5, blir da vendepunktet (2,-5)

Hvorfor bruker man ikke f(2), liksom du brukte g(-2) ?

InnleggSkrevet: 26/11-2003 17:12
oro2
Hm, det kan ikke stemme. (2,-5) er jo ikke et punkt på grafen til f

f(2)=-16

InnleggSkrevet: 26/11-2003 17:15
brukernavn01
Da er altså eksemplet feil da?

Takk og lov!

InnleggSkrevet: 26/11-2003 17:20
oro2
Jeg kan ikke garantere noe :wink: , får høre hva KM har å si. Men et vendepunkt må jo ligge på grafen..

InnleggSkrevet: 26/11-2003 17:33
administrator
Førstederivert er 3x^2-12x
Andrederivert er 6x-12

Punktet (x,y)

x=2

Det er greit, det forstår jeg, men så sier de...
Siden f(1)=-5, blir da vendepunktet (2,-5)

Hvorfor bruker man ikke f(2), liksom du brukte g(-2) ?


Eksemplet er feil og dere har rett. Her burde man brukt f(2). f(1) har so langt jeg kan se ingen ting med saken å gjøre. Og, et vendepukt ligger altid på grafen.

MVH
KM

InnleggSkrevet: 27/11-2003 23:19
ms99
Jeg hadde samme boka i fjor, så kan bekrefte at det eksempelet er feil i boka..