Integral regning...huff!

Her kan du stille spørsmål vedrørende problemer og oppgaver i matematikk for videregående skole og oppover på høyskolenivå. Alle som føler trangen er velkommen til å svare.

Integral regning...huff!

Innlegg Gjest » 26/11-2003 23:06

Jeg får ikke til disse integral oppgavene...!

1) [itgl][/itgl](x[sup]2[/sup]+1)/x[sup]2[/sup] dx

Har akkurat begynt på integral-regning, så har ikke fått så godt innblikk i dette emnet enda..

2) [itgl][/itgl]sin[sup]2[/sup]x dx
Jeg vet at svaret her skal bli 0.5x-(1/4)xsin 2x + C, men hvordan jeg skal klare å vise det, vet jeg ikke... :(

Noe hjelp? :roll:
Gjest offline

Innlegg oro2 » 26/11-2003 23:15

På den første kan du vel dele brøken i to, slik at du får to integraler:
[itgl][/itgl]dx + [itgl][/itgl]x[sup]-2[/sup]dx


Den andre:
Hint:
sin[sup]2[/sup]x = 1- cos[sup]2[/sup]x
cos(2x) = 2cos[sup]2[/sup]x - 1
oro2 offline
Guru
Guru
Brukerens avatar
Innlegg: 655
Registrert: 23/11-2003 01:47
Bosted: Bergen

Innlegg Gjest » 28/11-2003 20:18

Hvordan kan jeg dele brøken i to?

Jeg får de fortsatt ikke til...! integrasjon - my enemy! :cry:
Gjest offline

Innlegg oro2 » 28/11-2003 20:29

[itgl][/itgl](x[sup]2[/sup]+1)/x[sup]2[/sup] dx

Hvis du har to brøker med samme nevner kan du sette på felles brøkstrek, her går vi andre veien

[itgl][/itgl](x[sup]2[/sup]/x[sup]2[/sup]+1/x[sup]2[/sup])dx

x[sup]2[/sup]/x[sup]2[/sup] = 1
1/x[sup]2[/sup] = x[sup]-2[/sup]


[itgl][/itgl](1+x[sup]-2[/sup])dx

Generelt:
Integralet av en sum av to ledd er lik integralet av det første leddet pluss intregralet av den andre leddet.
[itgl][/itgl](f(x) + g(x))dx = [itgl][/itgl]f(x)dx + [itgl][/itgl]g(x)dx

Da får du:
[itgl][/itgl]dx + [itgl][/itgl]x[sup]-2[/sup]dx
oro2 offline
Guru
Guru
Brukerens avatar
Innlegg: 655
Registrert: 23/11-2003 01:47
Bosted: Bergen

Innlegg Rune » 30/11-2003 13:55

Når det gjelder integralregning gjelder det å regne mest mulig(gjelder forsåvidt all matematikk:)), spesielt oppgaver med substitusjon.
Rune offline

Innlegg oro2 » 30/11-2003 15:47

Ja det kan være en fordel å ha regnet endel oppgaver for å vite hvilken metode man skal bruke ved integrasjon (f eks delvis integrasjon, delbrøksoppspaltning, substitusjon).

Det finnes også endel spesielle integraler man må kjenne igjen, f eks:
[itgl][/itgl]dx/(1+x[sup]2[/sup]) = tan[sup]-1[/sup](x) + C, og kombinere dette med f eks substitusjon og fullstendig kvadrat.
oro2 offline
Guru
Guru
Brukerens avatar
Innlegg: 655
Registrert: 23/11-2003 01:47
Bosted: Bergen

Innlegg MS-DOS » 01/12-2003 16:41

Har integral noe med areal å gjøre??

-Nybegynner :(
:P
MS-DOS offline
Noether
Noether
Innlegg: 22
Registrert: 02/11-2003 20:17

Innlegg Rune » 01/12-2003 17:07

Integralregning brukes til å regne ut areal av grafer, omdreiningslegemer(volum), sum av rekker,etc. En sentral del av matematikken.
Rune offline

Innlegg oro2 » 01/12-2003 17:07

MS-DOS skrev:Har integral noe med areal å gjøre??

-Nybegynner :(


Ja, et bestemt integral er arealet mellom grafen og x-aksen i intervallet for integralet. Kan også brukes til volum av omdreiningslegemer.
oro2 offline
Guru
Guru
Brukerens avatar
Innlegg: 655
Registrert: 23/11-2003 01:47
Bosted: Bergen

Innlegg Gjest » 02/12-2003 18:00

Dette med omdreiningslegeme...

hvis en funksjon da er gitt ved f(x)=1-x+sin x, der definisjonsmengden er lik <-2[pi][/pi], 2[pi][/pi]>

Og grafen til f og koordinataksene avgrenser et flatestykke som dreies 360 grader rundt x-aksen, hvordan finner jeg da volumet av omdreiningslegemet?

Har ikke funnet noen oppgaver om dette.
Gjest offline

Innlegg oro2 » 02/12-2003 18:05

Deler opp flaten i skiver med bredde dx og høyde f(x).

Da blir volumet av en skive som roterer:
pi*(f(x))[sup]2[/sup]dx

For alle skiver:
pi*[itgl][/itgl](1-x+sin x)[sup]2[/sup]dx (bestemt integral fra -2pi til 2pi)
oro2 offline
Guru
Guru
Brukerens avatar
Innlegg: 655
Registrert: 23/11-2003 01:47
Bosted: Bergen

Hvem er i forumet

Brukere som leser i dette forumet: Ingen registrerte brukere og 13 gjester

cron