Matematisk induksjon

Her kan du stille spørsmål vedrørende problemer og oppgaver i matematikk for videregående skole og oppover på høyskolenivå. Alle som føler trangen er velkommen til å svare.

Matematisk induksjon

Innlegg dahle-g » 24/03-2021 16:50

Hei har ei oppgåve A6.70 Sigma R2 2015
Står litt fast her.
k = 1/2, men får ikkje s_n = 2 – 1/2^n når eg
set inn k = 1/2

Sjå mine utrekningar nedanfor.
Kva for verdi skal eg sette inn for n visst eg set inn n = 1
blir det feil
1/2^n = 2 – 1/2^n =1/2 = 3/2

A 6.70
Bevis ved matematisk induksjon at
1 + 1/2 + 1/4 + . . . + 1/2^n = 2 – 1/2^n

k = a_2/a_1 = (1/2)/1 = 1/2
k = a_3/a_2 = (1/4)/(1/2) = 1/2

s_n = a_1· (( k^n-1))/(k-1), k ≠ 1

s_n = 1· (( 〖1/2〗^n-1))/(1/(2 )-1) = (2 · (1)^n/(2)^n -1)/(1-2) = (2 · (1)^n/(2)^n -1)/(-1)
dahle-g offline
Noether
Noether
Innlegg: 28
Registrert: 02/05-2017 00:17

Re: Matematisk induksjon

Innlegg jos » 24/03-2021 19:16

Det er feil i oppgaveteksten. Det skal stå:

$ 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} + \,\cdot\cdot\cdot\,+ \frac{1}{2^n} = 2 - \frac{1}{2^{n - 1}}$
jos offline
Cayley
Cayley
Innlegg: 83
Registrert: 04/06-2019 11:01

Re: Matematisk induksjon

Innlegg jos » 24/03-2021 20:47

jos skrev:Det er feil i oppgaveteksten. Det skal stå:

$ 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \,\cdot\cdot\cdot\,+ \frac{1}{2^n} = 2 - \frac{1}{2^{n - 1}}$
jos offline
Cayley
Cayley
Innlegg: 83
Registrert: 04/06-2019 11:01

Re: Matematisk induksjon

Innlegg dahle-g » 25/03-2021 21:10

Hei! Treng meir oppklaring og hjelp
Er ikkje sikker på kva den rette oppgåveteksten på den geometriske rekkja skal vere?
Her er det noko som ikkje stemmer?

1 + 1/2 + 1/4 + 1/8 . . . + 1/2^(n) = 2 – 1/2^(n - 1)

k = 1/2

Korleis kan 1/2^(n) gi at a_1 = 1

Vi har a_n = a_1 · k^(n-1) = 1 · 1/2^(n-1) = (1/2)^(n -1) = (1)^( n - 1)/〖(2) 〗^(n - 1) = 1/2^(n - 1) ?

korleis kjem ein vidare her: slik eg får s_n = 2 – 1/2^(n - 1)

s_n = 1· (((1/2)^n- 1) )/(1/2 - 1) = (( - 2) · ((1/2)^n- 1))/((- 1/2) ·( - 2))
dahle-g offline
Noether
Noether
Innlegg: 28
Registrert: 02/05-2017 00:17

Re: Matematisk induksjon

Innlegg jos » 25/03-2021 22:40

Det er jeg som har vært litt for eplekjekk her. Summen av de n + 1 første leddene (ikke de n første):

$S_{n + 1} = 1 + \frac{1}{2} + \frac{1}{4} + \cdot\,\cdot\, + \,\frac{1}{2^n} = 2 - \frac{1}{2^n}$

$S_n = S_{n +1} - a_{n + 1} = 2 - \frac{1}{2^n} - \frac{1}{2^n} = 2 - \frac{2}{2^n} = 2 - \frac{1}{2^{n -1}}$
jos offline
Cayley
Cayley
Innlegg: 83
Registrert: 04/06-2019 11:01

Re: Matematisk induksjon

Innlegg dahle-g » 27/03-2021 09:44

Hei!
Treng litt oppklaring her.
Sjekker først for n = 1, og venstre og høgre side blir ulike
Kva gjer ein her då, når ein ikkje kan gå til nivå B?
Finst det ein spesiell framgangsmåte ein kan nytte?

NIVÅ A: Vi kontrollerer formelen for n = 1



Vi ser at dette ikkje er rett:

NIVÅ B Kva gjer vi her når det ikkje stemmer for n = 1 på nivå A

NB! Ser at rekkja er geometrisk k = 1/2 og a_1
ser også at rekkja er:

s_n + 1 = 1 + 1/2 + 1/4 + . . . +1/2^n - 1 + 1/2^n = 1 – 1/2^n
+1/2^n - 1 + 1/2^(n + 1) - 1 = 1 – 1/2^n
+1/2^n - 1 + 1/2^n= 1 – 1/2^n

Har prøvd å finne a_n og s_n men er usikker på om det eg har gjort er riktig:

det er overgangen frå s_n = 2-〖2 · 1〗^n/2^n = 2- (2^1 · 1)/2^n = 2 – 1/(2^n · 2^1 ) = 2 – 1/(2^(n - 1) )
det er overgangen a_n =(2 · (1/2)^n)/1 =(2 · 1^n)/2^n = (2^1 · 1)/2^n = 1/(2^n · 〖2 〗^(- 1) ) = 1/2^(n - 1)

a_n = a_1 · (k)^(n -1)

a_n = 1 · (1/2)^(n -1) = (1/2)^n · (1/2)^(-1) = (1/2)^n/(1/2)^1 = (1/2)^n/(1/2 · 2) = (2 · (1/2)^n)/1 =(2 · 1^n)/2^n = (2^1 · 1)/2^n = 1/(2^n · 〖2 〗^(- 1) ) = 1/2^(n - 1)

s_n = a_1· (( k^n-1))/(k-1), k ≠ 1

s_n= 1· (((1/2)^n- 1) )/(1/2 - 1) = (( - 2) · ((1/2)^n- 1))/((- 1/2) ·( - 2)) = (2 - 2 · (1/2)^n )/1 = 2-〖2 · 1〗^n/2^n = 2- (2^1 · 1)/2^n = 2 – 1/(2^n · 2^1 ) = 2 – 1/(2^(n - 1) )

Viktig for meg å ha ein oppskrift når eg skal løyse slike oppgåver:
dahle-g offline
Noether
Noether
Innlegg: 28
Registrert: 02/05-2017 00:17

Re: Matematisk induksjon

Innlegg jos » 27/03-2021 11:29

Hvis du setter$\, n = 1$ i $S_{n + 1}$, får du $S_2 = 2 - \frac{1}{2^1} = \frac{3}{2} $, og det stemmer.
jos offline
Cayley
Cayley
Innlegg: 83
Registrert: 04/06-2019 11:01

Re: Matematisk induksjon

Innlegg dahle-g » 29/03-2021 08:49

Takk for hjelpa

Har prøvd meg på å lage eit oppsett av løysinga på oppgåva.
Er dette eit godkjent svar på oppgåva ?


Oppgåve A 6.70 Sigma R 2 2015

Bevis ved matematisk induksjon at
1 + 1/2 + 1/4 + . . . + 1/2^n = 2 – 1/2^n

s_(n + 1) = 1+1/2+1/4 + ...+ 1/2^n = 2 – 1/2^n

s_n= s_(n + 1)-a_(n + 1) = 2 – 1/2^n – 1/2^n = 2 – 2/2^n = 2 – 1/(2^n · 〖2 〗^(- 1) ) = 2 – 1/2^(n - 1)

NIVÅ A: Vi kontrollerer formelen for n = 1, det vil seie at

a_1 = 2 – 1/2^(n - 1)
1 = 2 – 1/2^(1 - 1)
1 = 2 – 1/2^0
1 = 2 – 1
1= 1

Vi ser at dette er riktig:

NIVÅ B Vi går ut for at formelen stemmer for n. Eitt nivå høgare får vi no
Formelen stemmer for ¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬ ↓
Venstre side: ⏞ (1 + 1/2 + 1/4 + ...+ 2 – 1/2^(n - 1) + 1/2^n ) – 1/2^n = 2 – 1/2^n – 1/2^n
= 2 – 2^1/2^n
= 2 – 1/(2^n · 2^1 )
= 2 – 1/2^(n - 1)

Høgre side: 2 – 1/2^(n - 1) + n+1 = 2 – 1/2^((n- 1))
= 2 – 1/2^(((n +1) - 1))
= 2 – 1/2^n

Altså stemmer også formelen for (n + 1).

Konklusjon:
Matematisk induksjon gir at formelen er korrekt for naturlege tal n.
dahle-g offline
Noether
Noether
Innlegg: 28
Registrert: 02/05-2017 00:17

Hvem er i forumet

Brukere som leser i dette forumet: Ingen registrerte brukere og 54 gjester