Finn første og andre deriverte

Her kan du stille spørsmål vedrørende problemer og oppgaver i matematikk på høyskolenivå. Alle som har kunnskapen er velkommen med et svar. Men, ikke forvent at admin i matematikk.net er spesielt aktive her.

Finn første og andre deriverte

Innlegg Roj » 19/02-2007 21:33

Hei, trenger litt matematisk hjelp her...Jeg skal finne første og andre deriverte av funksjonen:

Bilde
Roj offline
Cantor
Cantor
Brukerens avatar
Innlegg: 106
Registrert: 27/08-2006 12:16

Innlegg Janhaa » 19/02-2007 21:58

[tex]v(t)={2sin({\pi\over 6}t)\,+\,7}[/tex]

[tex]v^,={{\pi\over 3}cos({\pi\over 6}t)}[/tex]

[tex]v^{,,}=-{\pi^2\over 18}{sin({\pi\over 6}t)}[/tex]
La verken mennesker eller hendelser ta livsmotet fra deg.
Marie Curie, kjemiker og fysiker.

[tex]\large\dot \rho = -\frac{i}{\hbar}[H,\rho][/tex]
Janhaa offline
Boltzmann
Boltzmann
Brukerens avatar
Innlegg: 8068
Registrert: 21/08-2006 02:46
Bosted: Grenland

Innlegg Roj » 20/02-2007 19:43

Takk for den Janhaa, nå som jeg kjenner den andrederiverte, hvordan finner jeg da de største og minste punktene? og hvor raskt det stiger? TE[0,24>
Roj offline
Cantor
Cantor
Brukerens avatar
Innlegg: 106
Registrert: 27/08-2006 12:16

Innlegg Janhaa » 20/02-2007 19:58

For max/min sett v ' (t) = 0 og løslikninga mhp t. Sett så t inn i v(t).

For å finne hvor raskt de endres (stiger/synker), så sett v'' (t) = 0,
og løs mhp t. Putt deretter t inn i v(t) igjen.
La verken mennesker eller hendelser ta livsmotet fra deg.
Marie Curie, kjemiker og fysiker.

[tex]\large\dot \rho = -\frac{i}{\hbar}[H,\rho][/tex]
Janhaa offline
Boltzmann
Boltzmann
Brukerens avatar
Innlegg: 8068
Registrert: 21/08-2006 02:46
Bosted: Grenland

Innlegg Roj » 20/02-2007 20:46

Oki tusen takk
Roj offline
Cantor
Cantor
Brukerens avatar
Innlegg: 106
Registrert: 27/08-2006 12:16

Innlegg Roj » 21/02-2007 17:18

Hei igjen, slitter litt med oppgaven her må jeg si.

I et område med tidevann regner en med at vannstanden i perioder er bestemt ved:

Bilde

a) finn første og andre deriverte, den er grei.
b) når er vannstanden høyst, og når er den lavest?
c) når stiger vannet raskest?

fasit:

b)vannstanden er høyest kl 03:00 og kl 15:00
lavest kl 09:00 og kl 21:00.

c) stiger raskest 00:00 og kl 12:00.

Huff ! :roll:
Roj offline
Cantor
Cantor
Brukerens avatar
Innlegg: 106
Registrert: 27/08-2006 12:16

Innlegg Markonan » 21/02-2007 17:55

Oppgave b) og c) blir bare å sette den deriverte og annenderiverte lik 0 å finne svaret.

Den deriverte lik null gir deg topp/bunnpunkt til funksjonen som i dette tilfellet er høyeste/laveste vannstand.

Den annenderiverte lik null gir deg vendepunktene til funksjonen, som her blir når vannet stiger raskest.
An ant on the move does more than a dozing ox.
Lao Tzu
Markonan offline
Euclid
Euclid
Brukerens avatar
Innlegg: 2133
Registrert: 24/11-2006 19:26
Bosted: Oslo

Innlegg Roj » 21/02-2007 18:08

Jeg har fått med meg det, janhaa forklarte det lenger oppe i tråden. Problemet er at jeg ikke klarer å sette de lik null og regne på hensyn av t. Skjønner meg ikke helt på radianer og funksjoner sånn som dette.
Roj offline
Cantor
Cantor
Brukerens avatar
Innlegg: 106
Registrert: 27/08-2006 12:16

Innlegg Markonan » 21/02-2007 18:27

Setter den deriverte lik null.

[tex]v^{,}(t)\;=\;\frac{\pi}{3}cos(\frac{\pi}{6}t)\;=\;0[/tex]

[tex]cos(\frac{\pi}{6}t)\;=\;0[/tex]

[tex]\frac{\pi}{6}t\;=\;1.570796[/tex]

[tex]t = 3[/tex]
An ant on the move does more than a dozing ox.
Lao Tzu
Markonan offline
Euclid
Euclid
Brukerens avatar
Innlegg: 2133
Registrert: 24/11-2006 19:26
Bosted: Oslo

Re: Finn første og andre deriverte

Innlegg Machi » 06/05-2019 12:33

Hei, er det noen som kan forklare meg hvorfor:

v(t)=2sin(π6t)+7 derivert blir π3cos(π6t), og hvorfor det igjen derivert blir −π218sin(π6t).

Med utregning, og eventuelt hvilke regler som benyttes for å få derivasjonen her til å gå opp.

På forhånd takk for hjelpa
Machi offline

Re: Finn første og andre deriverte

Innlegg Aleks855 » 06/05-2019 14:00

Kjerneregelen råder her, men det ser ut som det er gjort en feil.

$v(t) = 2\sin(6\pi t) + 7$

$v'(t) = 2\cdot 6\pi \cdot \cos(6\pi t) = 12\pi\cos(6\pi t)$

$v''(t) = 12\pi \cdot 6\pi \cdot -\sin(6\pi t) = -72\pi^2\sin(6\pi t)$
Bilde
Aleks855 online
Rasch
Rasch
Innlegg: 6263
Registrert: 19/03-2011 15:19
Bosted: Trondheim

Re: Finn første og andre deriverte

Innlegg maplusste » 05/05-2020 12:09

Hei! nå sitter jeg og sliter noe fryktelig med å skjønne denne oppgaven.

Hvordan kommer jeg fram til de svarene som står i fasiten på opp b) og c)?
Hvor vannstanden er høyest kl 02 og kl 15, og lavest kl 09 og 21 i b. og at den stiger raskest kl 00 og kl 12 i c.

En fremgangsmåte som viser hvordan det til slutt blir de klokkeslettene hadde vært til stor hjelp! :D
maplusste offline
Fibonacci
Fibonacci
Innlegg: 3
Registrert: 14/04-2020 12:55

Re: Finn første og andre deriverte

Innlegg josi » 05/05-2020 13:54

Jeg går ut fra at funksjonen som angir vannstanden
$ = v(t) = 2sin(\frac{\pi * t}{6}) + 7$ hvor t angir antall timer etter midnatt.

$ v(t)´= \frac{\pi}{3} * cos(\frac{\pi * t}{6})$.

Sinusfunksjonen har maksimum for

$ x = \frac{\pi}{2} + n * 2\pi$ hvor $ n = 0\,\vee\,1$ og minimum for $x =

\frac{3 * \pi}{2} + n * 2\pi$.

Vi setter

$\frac{\pi * t}{6} = \frac{\pi}{2} + n * 2\pi$

$t = 3 + 12n$ gir $v_{max}$ for $ t = 3, t = 15$

og

$\frac{\pi * t}{6} = \frac{3 * \pi}{2} + n * 2\pi$

$t = 9 + 12n$ gir $v_{min}$ for $ t = 9, t = 21$

Den deriverte av $ v(t) = v(t)´= \frac{\pi}{3} * cos(\frac{\pi * t}{6})$.

Cosinusfunksjonen har maksimumsverdier og dermed raskest vekst av $v(t)$ for

$ x = n * 2\pi, n = 0,1$.

Det gir

$\frac{\pi * t}{6} = n * 2\pi$

$ t = 0, 12$
josi offline

Re: Finn første og andre deriverte

Innlegg maplusste » 05/05-2020 16:14

Tusen takk! Nå forstod jeg det :D
maplusste offline
Fibonacci
Fibonacci
Innlegg: 3
Registrert: 14/04-2020 12:55

Hvem er i forumet

Brukere som leser i dette forumet: Ingen registrerte brukere og 12 gjester