Derivasjon av komplisert uttrykk

Her kan du stille spørsmål vedrørende problemer og oppgaver i matematikk på høyskolenivå. Alle som har kunnskapen er velkommen med et svar. Men, ikke forvent at admin i matematikk.net er spesielt aktive her.

Derivasjon av komplisert uttrykk

Innlegg Krisemann » 20/09-2018 15:34

Hei, jeg sitter fast med en oppgave som jeg ikke greier å løse, selv om jeg har prøvd å derivere den flere ganger. Den ser slik ut:

[tex]g(x)=arccos(1/cosh(3x))[/tex]

Deretter skal jeg finne g'(ln(3)).

Er det noen som greier å løse denne, og gjerne også forklare trinnene?
Krisemann offline

Re: Derivasjon av komplisert uttrykk

Innlegg DennisChristensen » 20/09-2018 16:05

Krisemann skrev:Hei, jeg sitter fast med en oppgave som jeg ikke greier å løse, selv om jeg har prøvd å derivere den flere ganger. Den ser slik ut:

[tex]g(x)=arccos(1/cosh(3x))[/tex]

Deretter skal jeg finne g'(ln(3)).

Er det noen som greier å løse denne, og gjerne også forklare trinnene?


Vi vet at $\frac{\text{d}}{\text{d}x}\arccos x = -\frac{1}{\sqrt{1-x^2}}$ og at $\frac{\text{d}}{\text{d}x}\cosh x = \sinh x$. Bruker vi kjerneregelen og brøkregelen får vi dermed at
$$g'(x) = -\frac{1}{\sqrt{1-\left(\frac{1}{\cosh (3x)}\right)^2}}\times \frac{-3\sinh (3x)}{\cosh^2 (3x)} = \frac{3\sinh (3x)}{\cosh^2 (3x)\sqrt{\frac{\cosh ^2 (3x) - 1}{\cosh^2 (3x)}}} = \frac{3\sinh (3x)}{\cosh^2 (3x)\sqrt{\frac{\sinh^2 (3x)}{\cosh^2 (3x)}}} = \frac{3\sinh (3x)\cosh (3x)}{\cosh^2 (3x)\sinh (3x)} = \frac{3}{\cosh (3x)} = 3\, \text{sech} (3x).$$
DennisChristensen offline
Fermat
Fermat
Innlegg: 786
Registrert: 09/02-2015 23:28
Bosted: Oslo

Re: Derivasjon av komplisert uttrykk

Innlegg Krisemann » 21/09-2018 12:13

Tusen takk :D
Krisemann offline

Hvem er i forumet

Brukere som leser i dette forumet: MSN [Bot] og 53 gjester