Påstander (Taylorpolynomer)

Her kan du stille spørsmål vedrørende problemer og oppgaver i matematikk på høyskolenivå. Alle som har kunnskapen er velkommen med et svar. Men, ikke forvent at admin i matematikk.net er spesielt aktive her.

Påstander (Taylorpolynomer)

Innlegg dna_ » 25/10-2018 11:01

Hei!

La f være en glatt funksjon (altså en funksjon som er uendelig mange ganger deriverbar) og la Pn være n.ordens taylorpolynom for f om et punkt a.

Marker de utsagnene under som er korrekte:



-Feilen til tilnærmingen av f med P3 er gitt ved E3(x)=f(4)(a)4!(x−a)4. denne er korrekt
-P4 vil alltid gi en bedre tilnærming enn P3 overalt, siden |E4(x)|<|E3(x)|, for alle x. usikker (på hva dette forteller meg...)
-Pn(x) tilnærmer f(x) nær x=a bedre enn for noe annet polynom av grad n. usikker. Kanskje? Siden; generelt, hvis f'nte derivert av x eksisterer i ett åpent intervall med x = a, så er P(x) polynomry dom msyvhrt f og dens første n deriverte i x=a. Og siden P_n(x)=f(a) ... , og beskriver f(x) nær x=a bedre enn noe annet polynom av grad n.
-Når n=3 har vi f(x)=f(a)+f′(a)(x−a)+f′′(a)2(x−a)2+f′′′(a)6(x−a)3+O((x−a)4). nei? tror ikke det?
-Pn(x) tilnæ9rmer f(x) bedre enn for noe annet polynom av grad n, for alle x. dette ligner litt for påstand 3... tror kanskje ja?8x
-Når n=3 har vi f(x)=f(a)+f′(a)(x−a)+f′′(a)2(x−a)2+f′′′(a)6(x−a)3. det etter f(x) samsvarer med taylorpolynomet når n?3, men litt usikker siden det står f(x) og ikke P_3(x)=, fordi funksjonen f blir jo ikke det samme som taylorpolynomet, eller? Eller, vi har jo at P_n(a)=f(a), så kanskje det stemmer?

Sliter litt mer å få riktig på denne. Er generelt dårlig på flervalgsoppgaver/påstandsoppgaver, og trenger noen tips til hvordan man burde gå frem.
Skjønner jo at jeg kanskje burde
1. luke ut hva som virker rett
2. luke ut det jeg vet ikke er rett
dna_ offline

Hvem er i forumet

Brukere som leser i dette forumet: Ingen registrerte brukere og 10 gjester