lengde til en graf

Her kan du stille spørsmål vedrørende problemer og oppgaver i matematikk på høyskolenivå. Alle som har kunnskapen er velkommen med et svar. Men, ikke forvent at admin i matematikk.net er spesielt aktive her.

Re: lengde til en graf

Innlegg Janhaa » 30/10-2018 21:56

Olav.K skrev:
MatteForLife skrev:Oppgave b) bruk substitusjonen t = 1/2 (e^u - e^-u) til å vise at
L = 1/2sqrt(5) + 1/4 ln(2+sqrt(5))
Kommer meg ikke videre enn å ha klart å derivere t, hva gjør jeg videre?

Jo, her er oppgave b, man skal bruke substitusjonen t =...... inn i oppgave a.

[tex]t=\sinh(u)[/tex]
der
[tex]dt=\cosh(u) du[/tex]
altså:

[tex]I=\frac{1}{2}\int_{0}^{2}\sqrt{1+t^2}\,dt=\frac{1}{2}\int_{0}^{arcsinh(2)}\sqrt{1+\sinh^2(u)}\,\cosh(u)du=\frac{1}{2}\int_{0}^{arcsinh(2)}\cosh^2(u)du=...[/tex]
La verken mennesker eller hendelser ta livsmotet fra deg.
Marie Curie, kjemiker og fysiker.

[tex]\large\dot \rho = -\frac{i}{\hbar}[H,\rho][/tex]
Janhaa offline
Boltzmann
Boltzmann
Brukerens avatar
Innlegg: 7688
Registrert: 21/08-2006 02:46
Bosted: Grenland

Re: lengde til en graf

Innlegg Olav.K » 30/10-2018 22:57

Janhaa skrev:
Olav.K skrev:
MatteForLife skrev:Oppgave b) bruk substitusjonen t = 1/2 (e^u - e^-u) til å vise at
L = 1/2sqrt(5) + 1/4 ln(2+sqrt(5))
Kommer meg ikke videre enn å ha klart å derivere t, hva gjør jeg videre?

Jo, her er oppgave b, man skal bruke substitusjonen t =...... inn i oppgave a.

[tex]t=\sinh(u)[/tex]
der
[tex]dt=\cosh(u) du[/tex]
altså:

[tex]I=\frac{1}{2}\int_{0}^{2}\sqrt{1+t^2}\,dt=\frac{1}{2}\int_{0}^{arcsinh(2)}\sqrt{1+\sinh^2(u)}\,\cosh(u)du=\frac{1}{2}\int_{0}^{arcsinh(2)}\cosh^2(u)du=...[/tex]


Tror jeg er drit dum, skjønner fortsatt ikke xD :/ ps: vet ikke om jeg skal le eller gråte
Olav.K offline

Forrige

Hvem er i forumet

Brukere som leser i dette forumet: Ingen registrerte brukere og 18 gjester