Omskriving av taylorrekke

Her kan du stille spørsmål vedrørende problemer og oppgaver i matematikk på høyskolenivå. Alle som har kunnskapen er velkommen med et svar. Men, ikke forvent at admin i matematikk.net er spesielt aktive her.

Omskriving av taylorrekke

Innlegg Kwerty » 08/12-2018 12:22

Hei,

Vis at Taylorrekka til f (x) = arctan x / x (der vi definerer f (0) = 1) omkring x = 0 er:

[tex]\sum_{n = 0}^{inf} \frac{(-1)^nx^{2n}}{2n+1}[/tex]


Måten jeg løser dette på er å omskrive [tex]\frac{1}{1-x} = \sum_{n = 0}^{inf} x^n[/tex] til [tex]\frac{1}{1-(-x)^2} = \sum_{n = 0}^{inf} (-1)^nx^{2n}[/tex]. Integrerer:

[tex]\int \frac{1}{1-(-x^2)} = arctan(x) + C = \sum_{n = 0}^{inf} \frac{(-1)^nx^{2n+1} }{2n+1}[/tex]

Så deler jeg bare rekken på x og får det jeg skulle vise. Men hva skjer med konstantleddet fra integreringen? Og hva med opplysningen om at f(0) = 1? I LF har de bare ignorert integreringskonstanten ser det ut som.
Kwerty offline
Noether
Noether
Innlegg: 36
Registrert: 14/11-2018 18:30

Re: Omskriving av taylorrekke

Innlegg Markus » 08/12-2018 19:52

Se på konklusjonen din; $\arctan(x)+C=\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}$. Sett nå $x=0$ og løs for $C$. Hva må $C$ bli da?
Markus offline
Abel
Abel
Innlegg: 614
Registrert: 20/09-2016 12:48
Bosted: NTNU

Re: Omskriving av taylorrekke

Innlegg Kwerty » 08/12-2018 20:12

Den må bli 0, er det korrekt?
Kwerty offline
Noether
Noether
Innlegg: 36
Registrert: 14/11-2018 18:30

Re: Omskriving av taylorrekke

Innlegg Markus » 08/12-2018 20:23

Kwerty skrev:Den må bli 0, er det korrekt?

Det stemmer.
Markus offline
Abel
Abel
Innlegg: 614
Registrert: 20/09-2016 12:48
Bosted: NTNU

Re: Omskriving av taylorrekke

Innlegg Kwerty » 08/12-2018 20:27

Markus skrev:
Kwerty skrev:Den må bli 0, er det korrekt?

Det stemmer.

Fint! men hva er opplysningen om at f(0) = 1 for? Brukes den noe sted?
Kwerty offline
Noether
Noether
Innlegg: 36
Registrert: 14/11-2018 18:30

Re: Omskriving av taylorrekke

Innlegg Markus » 08/12-2018 21:29

Kwerty skrev:
Markus skrev:
Kwerty skrev:Den må bli 0, er det korrekt?

Det stemmer.

Fint! men hva er opplysningen om at f(0) = 1 for? Brukes den noe sted?

Funksjonen $f(x)=\frac{\arctan(x)}{x}$ er ikke alene definert i $x=0$, men den kontinuerlige utvidelsen gitt ved $$\overset{\sim}{f}(x) = \left\{\begin{matrix}
1 & \text{hvis } x=0 \\
\frac{\arctan(x)}{x} & \text{ellers}
\end{matrix}\right.$$ er definert i $x=0$. Det er en tilleggsopplysning, siden $f$ ikke naturlig er definert i $x=0$, men den kan utvides til å bli det ved å tilordne en verdi til punktet $x=0$. Du skal utvikle om $x=0$, så da må funksjonen være definert der.
Markus offline
Abel
Abel
Innlegg: 614
Registrert: 20/09-2016 12:48
Bosted: NTNU

Re: Omskriving av taylorrekke

Innlegg Kwerty » 08/12-2018 21:32

Tusen takk!! :-) Settes veldig pris på.
Kwerty offline
Noether
Noether
Innlegg: 36
Registrert: 14/11-2018 18:30

Hvem er i forumet

Brukere som leser i dette forumet: Bing [Bot] og 17 gjester