Tolkning av et kompleks tall

Her kan du stille spørsmål vedrørende problemer og oppgaver i matematikk på høyskolenivå. Alle som har kunnskapen er velkommen med et svar. Men, ikke forvent at admin i matematikk.net er spesielt aktive her.

Tolkning av et kompleks tall

Innlegg Daffy Duck » 23/05-2019 00:20

Hei! :D

Kan vi tenke på et kompleks tall som en lineær kombinasjon av et reelt tall og et reelt tall som må roteres 90 grader? Altså at matematiske svar tar inn rotasjoner av reelle tall som en del av løsningene?

Bakgrunnen: Hvis vi ganger 1 med [tex]i[/tex] får vi [tex]i[/tex] :shock: , og ganger vi en gang til får vi [tex]i^2=-1[/tex]. Altså går vi fra 1 til -1 ved å gange 1 med [tex]i[/tex] 2 ganger, altså svinger vi 180 grader, eller 90 grader ved hver [tex]i[/tex].

For eksempel er "nullpunktet" til [tex]f(x)=x^2+1[/tex] lik [tex]\pm i = \pm 1 \cdot i[/tex] Altså er løsninga av ligninga at man roterer tallet x=1 eller x=-1 nitti grader.
Bilde

Eller er det kun mulig å tenke på funksjonen ovenfor som noe 1-dimensjonalt i et 3-dimensjonalt rom siden vi får en ekstra akse for den imaginære delen av den komplekse løsninga? Men vil det ikke da eksistere 2 eksemplarer av den samme funksjonen siden f(x) går gjennom både [tex](0,\pm i)[/tex]? :?
Daffy Duck offline

Re: Tolkning av et kompleks tall

Innlegg crov » 28/05-2019 19:04

valid interpretation, fullstendig mulig å tenke på $i$ som en normal-rotering (90deg), det brukes ofte for å forklare hvorfor [tex]e^{\pi\cdot i}=-1[/tex]

skulle gjerne sett bildene du prøvde å vise!
crov offline
Noether
Noether
Innlegg: 36
Registrert: 26/05-2018 23:41

Hvem er i forumet

Brukere som leser i dette forumet: Ingen registrerte brukere og 5 gjester