Grense av trigonometrisk funksjon

Her kan du stille spørsmål vedrørende problemer og oppgaver i matematikk på høyskolenivå. Alle som har kunnskapen er velkommen med et svar. Men, ikke forvent at admin i matematikk.net er spesielt aktive her.

Grense av trigonometrisk funksjon

Innlegg omarelhajj97 » 12/09-2019 17:52

Jeg skal finne grensen
[tex]\lim_{x \rightarrow 2} cos(f(x))[/tex],
der [tex]f(x)[/tex] er i dette tilfelle en rasjonal funksjon av polynomer.

Jeg har vist i en relatert tidligere oppgave at
[tex]\lim_{x \rightarrow 2} f(x) = 0[/tex],
og det viser seg at, for denne [tex]f(x)[/tex], er
[tex]\lim_{x \rightarrow 2} cos(f(x)) = 1[/tex].

Siden
[tex]\lim_{x \rightarrow 2} f(x) = 0[/tex] og [tex]cos(0) = 1[/tex],
dette lar meg hypotisere at
[tex]\lim_{x \rightarrow n} cos(f(x)) = cos(\lim_{x \rightarrow n} f(x))[/tex]
for alle [tex]f(x)[/tex].

Dette kan virke litt tilfeldig, men er det sant? Eller er det bare en heldig tilfelle?
Om det er sant, hvordan er det teorisert og hvordan kan jeg forklare/bevise det i oppgaven min?
Om det ikke er sant, hvordan kan jeg løse denne oppgaven?
omarelhajj97 offline
Pytagoras
Pytagoras
Innlegg: 12
Registrert: 03/10-2018 17:59

Re: Grense av trigonometrisk funksjon

Innlegg omarelhajj97 » 12/09-2019 18:29

Dataen foreslår at dette er sant:
Hypotesis_1.png
Hypotesis_1.png (49.44 KiB) Vist 343 ganger

Hypotesis_2.png
Hypotesis_2.png (52.73 KiB) Vist 343 ganger


Hvordan kan jeg forklare dette på en riktig måte i universitetsoppgaven min for å bevise at svaret til oppgaven er [tex]1[/tex]?

Takk for hjelpen!
omarelhajj97 offline
Pytagoras
Pytagoras
Innlegg: 12
Registrert: 03/10-2018 17:59

Re: Grense av trigonometrisk funksjon

Innlegg Emilga » 12/09-2019 19:10

Litt kjapp googling ledet meg til dette skrivet.

Det sier at:

$$ \lim_{x \to c} f(g(x)) = f \left( \lim_{x \to c} g(x) \right) $$

dersom $f$ er kontinuerlig i punktet $ \lim_{x \to c} g(x)$.

I vår eksempel, er $\lim_{x \to 2} f(x) = 0$.

Siden $\cos (x)$ er kontinuerlig i punktet $x=0$ (antar at dette er bevist i forelesning), kan vi skrive:

$$ \lim_{x \to 2} \cos (f(x)) = \cos \left( \lim_{x \to 2} f(x) \right) = \cos (0) = 1 $$
Emilga offline
Poincare
Poincare
Innlegg: 1413
Registrert: 20/12-2006 19:21
Bosted: NTNU

Hvem er i forumet

Brukere som leser i dette forumet: Ingen registrerte brukere og 17 gjester