Side 1 av 1

Differenslikninger

InnleggSkrevet: 25/09-2019 18:38
Maria Celina
xn+1=1.1×xn−200

Finn x0 sånn at ligningen når likevekstverdien.


.

Re: Differenslikninger

InnleggSkrevet: 25/09-2019 19:56
josi
Maria Celina skrev:xn+1=1.1×xn−200

Finn x0 sånn at ligningen når likevekstverdien.


.


Hva mener du med at "ligningen når likevekstverdien"?

Re: Differenslikninger

InnleggSkrevet: 25/09-2019 20:30
Maria Celina
At differenslikningen når stabilitet

Re: Differenslikninger

InnleggSkrevet: 25/09-2019 20:36
Maria Celina
There is one value for the initial condition (x0) for which the equation reaches stability ('likevekstverdien'). Find this initial condition.


Jeg vet at svaret blir x = 2000 men jeg skjønner ikke hvordan jeg kommer meg til dette svaret.

Re: Differenslikninger

InnleggSkrevet: 25/09-2019 21:09
josi
Xn+1 = 1.1Xn -200 , altså Xn+1-Xn = -200. dette er en heterogen likning av første orden. Den generelle løsningen av denne er en sum av den generelle løsningen av den tilordnede homogene likningen, Xn+1-Xn =0 og den partikulære løsningen av Xn+1-Xn = -200.

Den generelle løsningen av den homogene likningen er Xn = C*1,1^n, hvor C er en vilkårlig konstant.
Den partikulære løsningen finnes ved å gjette seg til at det finnes en løsning Xp av samme type som høyresiden i Xn+1-Xn = -200. Her er høyresiden en konstant = -200. Vi setterXp = A (en konstant) inn i lkiningen og får: A -1.1A = -200, A = 2000
Xn + Xp = A + C*1.1^n = 2000 + C*1.1^n, Xo = 2000 + C*1.1^0 = 2000 + C. Hvis funksjonen nå ikke skal endre seg med n, "reaches stability", må, hvis jeg skjønner oppgaven rett, C være lik 0, og dermed X0 lik 2000.

Re: Differenslikninger

InnleggSkrevet: 26/09-2019 12:32
Maria Celina
Tusen takk josi :)