Statistikk

Her kan du stille spørsmål vedrørende problemer og oppgaver i matematikk på høyskolenivå. Alle som har kunnskapen er velkommen med et svar. Men, ikke forvent at admin i matematikk.net er spesielt aktive her.

Statistikk

Innlegg Helenalar » 10/02-2020 11:08

Hei! Kan noen hjelpe meg med denne oppgaven?
Anta at hendelsene A og B er uavhengige av hverandre, og la A¯ og B¯ være deres komplementhendelser.
Er A¯ og B¯ uavhengige av hverandre?
Helenalar offline
Fibonacci
Fibonacci
Innlegg: 3
Registrert: 26/01-2020 15:03

Re: Statistikk

Innlegg DennisChristensen » 10/02-2020 15:46

Helenalar skrev:Hei! Kan noen hjelpe meg med denne oppgaven?
Anta at hendelsene A og B er uavhengige av hverandre, og la A¯ og B¯ være deres komplementhendelser.
Er A¯ og B¯ uavhengige av hverandre?


$A$ og $B$ er uavhengige, så $\mathbb{P}(A\cap B) = \mathbb{P}(A)\mathbb{P}(B)$. Dermed har vi at
$$\begin{align*}\mathbb{P}(A^-\cap B^-) & = \mathbb{P}((A\cup B)^-) \\
& = 1 - \mathbb{P}(A\cup B) \\
& = 1 - \left[\mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A\cap B)\right] \\
& = 1 - \left[\mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A)\mathbb{P}(B)\right] \\
& = (1 - \left(\mathbb{P}(A)\right)\left(1-\mathbb{P}(B)\right) \\
& = \mathbb{P}(A^-)\mathbb{P}(B^-),
\end{align*}$$
så $A^-$ og $B^-$ er også uavhengige.
DennisChristensen offline
Grothendieck
Grothendieck
Innlegg: 822
Registrert: 09/02-2015 23:28
Bosted: Oslo

Hvem er i forumet

Brukere som leser i dette forumet: Ingen registrerte brukere og 142 gjester