Et integral

Her kan du stille spørsmål vedrørende problemer og oppgaver i matematikk på høyskolenivå. Alle som har kunnskapen er velkommen med et svar. Men, ikke forvent at admin i matematikk.net er spesielt aktive her.

Et integral

Innlegg bikkja » 08/05-2020 16:54

Jeg har følgende integral som jeg ikke klarer å løse

[tex]\int \frac{1}{1+2x^2}dx[/tex]

Jeg antar at jeg må bruke substitusjon slik at jeg får integralet på formen:

[tex]\int \frac{1}{1+u^2}dx[/tex] slik at jeg kan utnytte at dette er [tex]\int \frac{1}{1+u^2}dx=arctan(u)+C[/tex]

Dersom jeg velger [tex]u=2x[/tex] og integrerer ved subsitusjon oppnår jeg følgende:

[tex]\int \frac{1}{1+u^2}(\frac{1}{2}du)=\frac{1}{2}\int\frac{1}{1+u^2}du=\frac{arctan(2x)}{2}+C[/tex]

Som i følge fasiten er feil. Tolker jeg fasiten riktig skal jeg velge [tex]u=\sqrt(2x)[/tex], men jeg skjønner ikke hvor rot-tegnet kommer fra.
Kan noen svare meg på dette, eller eventuelt lede meg i riktig retning?
bikkja offline
Fibonacci
Fibonacci
Innlegg: 4
Registrert: 03/02-2020 09:23

Re: Et integral

Innlegg Aleks855 » 08/05-2020 17:34

Se nøye på $u^2 = 2x^2$. Er du heeeelt sikker på at $u = 2x$ her? Hva er $u^2 = (2x)^2 = \ldots$?
Bilde
Aleks855 online
Rasch
Rasch
Innlegg: 6246
Registrert: 19/03-2011 15:19
Bosted: Trondheim

Hvem er i forumet

Brukere som leser i dette forumet: Ingen registrerte brukere og 23 gjester