Lenge siden sist vi integrerte...

Her kan brukere av forum utfordre hverandre med morsomme oppgaver og nøtter man ønsker å dele med andre. Dette er altså ikke et sted for desperate skrik om hjelp, de kan man poste i de andre forumene, men et sted for problemløsing på tvers av trinn og fag.

Innlegg sEirik » 22/05-2007 16:27

Tar [tex]I_2[/tex] uten trigonometrisk substitusjon jeg :)

2 min

[tex]I = \int (x + x^3) \sqrt{1 - x^2} {\rm d}x[/tex]

[tex]I = \int -\frac{1}{2} \cdot (-2x) \cdot (2 - (1 - x^2)) \sqrt{1 - x^2} {\rm d}x[/tex]

[tex]u = 1 - x^2[/tex], [tex]u^\prime = -2x[/tex]

[tex]I = \int -\frac{1}{2} \cdot u^\prime \cdot (2 - u) \cdot \sqrt {u} {\rm d}x[/tex]

[tex]I = \int -\frac{1}{2}(2-u)\sqrt {u} {\rm d}u[/tex]

[tex]I = -\frac{1}{2} \left ( \int 2u^{1/2} {\rm d}u - \int u^{3/2} {\rm d}u \right )[/tex]

stopper der :P
sEirik offline
Guru
Guru
Brukerens avatar
Innlegg: 1551
Registrert: 12/06-2006 20:30
Bosted: Oslo

Innlegg Janhaa » 24/05-2007 15:42

Integralene stemmer - flinke gutter. Løste sjøl siste I[sub]2[/sub] som Eirik.

-------------------------------------------------------------------------------

Ok prøver meg på daofeishi sitt, dvs jeg løser det ubestemte først

[tex]I=\int \frac{\cos(x){\rm dx}}{p\sin(x)+q\cos(x)}={1\over p^2+q^2} \int \frac{\left(q(p\sin(x)+q\cos(x))\,+\,p(p\cos(x)-q\sin(x))\right){\rm dx}}{p\sin(x)+q\cos(x)}[/tex]

setter u = psin(x) + qcos(x),
du = (pcos(x) - qsin(x)) dx

[tex]I= \frac{1}{p^2+q^2}\, \cdot (\int q {\rm dx}\,+\, p\int {{\rm du} \over u})[/tex]

[tex]I=\frac{1}{p^2+q^2}(qx\,+\,p\ln|u|)=\frac{1}{p^2+q^2}(qx\,+\,p\ln|p\sin(x)+q\cos(x)|)\,+\,C[/tex]

når grensene settes inn fås

[tex]I=\frac{1}{p^2+q^2}\, \cdot ({\pi\over 2}\cdot q \,+\,p \cdot \ln({p\over q}))[/tex]
Sist endret av Janhaa den 24/05-2007 22:35, endret 2 ganger.
La verken mennesker eller hendelser ta livsmotet fra deg.
Marie Curie, kjemiker og fysiker.

[tex]\large\dot \rho = -\frac{i}{\hbar}[H,\rho][/tex]
Janhaa offline
Boltzmann
Boltzmann
Brukerens avatar
Innlegg: 7839
Registrert: 21/08-2006 02:46
Bosted: Grenland

Innlegg mrcreosote » 24/05-2007 15:56

Den var smart, Janhaa! Jeg hadde tenkt å gå Weierstrasse, men det der var betraktelig penere.
mrcreosote offline
Guru
Guru
Brukerens avatar
Innlegg: 1995
Registrert: 10/10-2006 19:58

Innlegg ingentingg » 24/05-2007 21:56

Tar en som krever litt tenking hvis man ikke har sett den før

[tex]I_3 = \displaystyle\int_0^{\frac{\pi}4} \sqrt{1+sin x} dx[/tex]
ingentingg offline
Weierstrass
Weierstrass
Innlegg: 451
Registrert: 25/08-2005 16:49

Innlegg Janhaa » 27/05-2007 20:06

Kjører på med et av de integrala som forsvant (ikke for vanskelig dette):

[tex]I_4\,=\,\int x\cdot \sin(\sin(\arccos(x))) {\rm dx}[/tex]
La verken mennesker eller hendelser ta livsmotet fra deg.
Marie Curie, kjemiker og fysiker.

[tex]\large\dot \rho = -\frac{i}{\hbar}[H,\rho][/tex]
Janhaa offline
Boltzmann
Boltzmann
Brukerens avatar
Innlegg: 7839
Registrert: 21/08-2006 02:46
Bosted: Grenland

Innlegg sEirik » 28/05-2007 19:54

ingentingg skrev:Tar en som krever litt tenking hvis man ikke har sett den før

[tex]I_3 = \displaystyle\int_0^{\frac{\pi}4} \sqrt{1+sin x} dx[/tex]


Konjugasjon viser igjen sin styrke :P
sEirik offline
Guru
Guru
Brukerens avatar
Innlegg: 1551
Registrert: 12/06-2006 20:30
Bosted: Oslo

Innlegg Janhaa » 29/05-2007 15:33

ingentingg skrev:Tar en som krever litt tenking hvis man ikke har sett den før
[tex]I_3 = \displaystyle\int_0^{\frac{\pi}4} \sqrt{1+sin x} dx[/tex]

Med et hint, tar det ubestemte først:

[tex]I_3=\int \sqrt{1+\sin(x)} {\rm dx}=\int \frac{\sqrt{(1-\sin^2(x))}{\rm dx}}{\sqrt{(1-\sin(x))}[/tex]

[tex]I_3=\int \frac{\cos(x) {\rm dx}}{\sqrt{1-\sin(x)}[/tex]

u = 1 - sin(x)
-du = cos(x) dx

[tex]I_3=-\int \frac{{\rm du}}{\sqrt u}=-2u^{1\over 2}=-2(1-\sin(x))^{1\over 2}\,+\,C[/tex]

det bestemte integralet:

[tex]I_3=-2[\sqrt{1\,-\,\sin(x)}]_0^{\pi \over 4}=2\,-\,2\sqrt{\frac{2-\sqrt2}{2}}[/tex]
La verken mennesker eller hendelser ta livsmotet fra deg.
Marie Curie, kjemiker og fysiker.

[tex]\large\dot \rho = -\frac{i}{\hbar}[H,\rho][/tex]
Janhaa offline
Boltzmann
Boltzmann
Brukerens avatar
Innlegg: 7839
Registrert: 21/08-2006 02:46
Bosted: Grenland

Innlegg ingentingg » 29/05-2007 19:54

Det finnes en litt enklere måte.
[tex]/sin 2 \cdot u = 2 \sin u \cos u[/tex]

+ enhetsformelen.
ingentingg offline
Weierstrass
Weierstrass
Innlegg: 451
Registrert: 25/08-2005 16:49

Innlegg Janhaa » 09/06-2007 23:51

Siden ingen har løst [tex]\;I_4=\int x\cdot \sin(\sin(\arccos(x))) {\rm dx}\;[/tex]slenger jeg inn ett bidrag sjøl.

[tex]I_4=\int x\cdot \sin(\arcsin(\sqrt{1-x^2}) {\rm dx}=\int x\cdot \sin(\sqrt{1-x^2}){\rm dx}[/tex]

[tex]u^2=1-x^2[/tex]

[tex]I_4=-\int u\sin(u){\rm du}=-u\cos(u)\,+\,\int \cos(u) {\rm du}=u\cos(u)\,-\,\sin(u)[/tex]

[tex]I_4=\sqrt{1-x^2}\,\cos(\sqrt{1-x^2})\,-\,\sin(\sqrt{1-x^2})\,+\,C[/tex]
La verken mennesker eller hendelser ta livsmotet fra deg.
Marie Curie, kjemiker og fysiker.

[tex]\large\dot \rho = -\frac{i}{\hbar}[H,\rho][/tex]
Janhaa offline
Boltzmann
Boltzmann
Brukerens avatar
Innlegg: 7839
Registrert: 21/08-2006 02:46
Bosted: Grenland

Forrige

Hvem er i forumet

Brukere som leser i dette forumet: Ingen registrerte brukere og 8 gjester