funksjonallikning

Her kan brukere av forum utfordre hverandre med morsomme oppgaver og nøtter man ønsker å dele med andre. Dette er altså ikke et sted for desperate skrik om hjelp, de kan man poste i de andre forumene, men et sted for problemløsing på tvers av trinn og fag.

funksjonallikning

Innlegg Janhaa » 03/08-2017 11:53

Noen som har hint, evt løsning på funksjonallikningen under:

[tex]\large f(f(x)f(y)) + f(x+y) = f(xy)[/tex]

[tex]x, y \in\mathbb{R}[/tex]
La verken mennesker eller hendelser ta livsmotet fra deg.
Marie Curie, kjemiker og fysiker.

[tex]\large\dot \rho = -\frac{i}{\hbar}[H,\rho][/tex]
Janhaa offline
Boltzmann
Boltzmann
Brukerens avatar
Innlegg: 7770
Registrert: 21/08-2006 02:46
Bosted: Grenland

Re: funksjonallikning

Innlegg Gustav » 03/08-2017 15:09

Janhaa skrev:Noen som har hint, evt løsning på funksjonallikningen under:

[tex]\large f(f(x)f(y)) + f(x+y) = f(xy)[/tex]

[tex]x, y \in\mathbb{R}[/tex]


x=y=0 gir

$f(f(0)f(0))=0$, så det må finnes en (ikkenegativ) k slik at f(k)=0.

Sett x=k i den opprinnelige likningen:

$f(0)+f(k+y)=f(ky)$ (1)

Sett $y=\frac{k}{k-1}$ i likningen (1) over. Da er $k+y=ky=\frac{k^2}{k-1}$, så likningen forenkles til f(0)=0.

Sett y=0 i opprinnelig likning:

f(0)+f(x)=f(0), så f(x) er identisk lik 0, som er den eneste løsningen.
Gustav offline
Tyrann
Tyrann
Brukerens avatar
Innlegg: 4290
Registrert: 12/12-2008 12:44

Re: funksjonallikning

Innlegg Janhaa » 03/08-2017 19:37

plutarco skrev:
Janhaa skrev:Noen som har hint, evt løsning på funksjonallikningen under:
[tex]\large f(f(x)f(y)) + f(x+y) = f(xy)[/tex]
[tex]x, y \in\mathbb{R}[/tex]

x=y=0 gir
$f(f(0)f(0))=0$, så det må finnes en (ikkenegativ) k slik at f(k)=0.
Sett x=k i den opprinnelige likningen:
$f(0)+f(k+y)=f(ky)$ (1)
Sett $y=\frac{k}{k-1}$ i likningen (1) over. Da er $k+y=ky=\frac{k^2}{k-1}$, så likningen forenkles til f(0)=0.
Sett y=0 i opprinnelig likning:
f(0)+f(x)=f(0), så f(x) er identisk lik 0, som er den eneste løsningen.


takker...
La verken mennesker eller hendelser ta livsmotet fra deg.
Marie Curie, kjemiker og fysiker.

[tex]\large\dot \rho = -\frac{i}{\hbar}[H,\rho][/tex]
Janhaa offline
Boltzmann
Boltzmann
Brukerens avatar
Innlegg: 7770
Registrert: 21/08-2006 02:46
Bosted: Grenland

Re: funksjonallikning

Innlegg Gustav » 04/08-2017 07:48

Ser forresten nå at det er ett problem med min løsning, som gjør at den ikke er adekvat:) Hvis $k=f(0)^2=1$, så kan vi ikke sette inn $y=\frac{k}{k-1}$. Kanskje noen andre har tid til å fikse opp i dette!
Gustav offline
Tyrann
Tyrann
Brukerens avatar
Innlegg: 4290
Registrert: 12/12-2008 12:44

Hvem er i forumet

Brukere som leser i dette forumet: Ingen registrerte brukere og 20 gjester