Fakultet-rekke, modulo 15

Her kan brukere av forum utfordre hverandre med morsomme oppgaver og nøtter man ønsker å dele med andre. Dette er altså ikke et sted for desperate skrik om hjelp, de kan man poste i de andre forumene, men et sted for problemløsing på tvers av trinn og fag.

Fakultet-rekke, modulo 15

Innlegg Aleks855 » 20/12-2017 20:23

Finn $$1! + 2! + 3! + 4! + \ldots + 99! + 100! \pmod{15}$$
Bilde
Aleks855 offline
Rasch
Rasch
Innlegg: 5800
Registrert: 19/03-2011 15:19
Bosted: Trondheim

Re: Fakultet-rekke, modulo 15

Innlegg Markus » 20/12-2017 20:50

Primtallsfaktorisering av $15$ gir $15 = 3 \cdot 5$, slik at alle tall der $3$ og $5$ er faktorer vil være delelig på $15$. Derfor vil alle $n!$ der $n \geq 5$ være slik at $15 \mid n!$, så problemet forenkles til $1! + 2! + 3! + 4! \enspace (\text{mod } 15)$, og $1! + 2! + 3! + 4! \equiv 1 + 2 + 6 + 24 \equiv 33 \equiv 3 \enspace (\text{mod } 15) \Longrightarrow 1! + 2! + 3! + 4! + \dots + 99! + 100! \equiv 3 \enspace (\text{mod } 15)$
Markus offline
Fermat
Fermat
Innlegg: 759
Registrert: 20/09-2016 12:48
Bosted: NTNU

Re: Fakultet-rekke, modulo 15

Innlegg Janhaa » 20/12-2017 20:59

Kladde noe jeg også, men var litt sein.
Mønsteret trer fram:

[tex]1!+2!+3!+4!=33 \equiv 3 \pmod{15}\\
5!+33 =153\equiv 3 \pmod{15}\\
6!+153 =873\equiv 3 \pmod{15}\\
7!+873 =5913\equiv 3 \pmod{15}\\
\sum_{n=1}^{100}n!\equiv 3 \pmod{15}[/tex]
La verken mennesker eller hendelser ta livsmotet fra deg.
Marie Curie, kjemiker og fysiker.

[tex]\large\dot \rho = -\frac{i}{\hbar}[H,\rho][/tex]
Janhaa offline
Boltzmann
Boltzmann
Brukerens avatar
Innlegg: 7732
Registrert: 21/08-2006 02:46
Bosted: Grenland

Re: Fakultet-rekke, modulo 15

Innlegg Aleks855 » 21/12-2017 15:47

Naturligvis rett. Fint!
Bilde
Aleks855 offline
Rasch
Rasch
Innlegg: 5800
Registrert: 19/03-2011 15:19
Bosted: Trondheim

Re: Fakultet-rekke, modulo 15

Innlegg Markus » 22/12-2017 23:02

Liten fakultetmodulooppfølger:

Finn $17! \enspace (\text{mod } 19)$

Hint hvis noen ikke vet helt hvor man skal starte:
[+] Skjult tekst
Wilsons teorem: $(p-1)! \equiv -1 \enspace (\text{mod } p)$, der $p$ er primtall.
Markus offline
Fermat
Fermat
Innlegg: 759
Registrert: 20/09-2016 12:48
Bosted: NTNU

Re: Fakultet-rekke, modulo 15

Innlegg Gustav » 23/12-2017 02:11

Markus skrev:Liten fakultetmodulooppfølger:

Finn $17! \enspace (\text{mod } 19)$

Hint hvis noen ikke vet helt hvor man skal starte:
[+] Skjult tekst
Wilsons teorem: $(p-1)! \equiv -1 \enspace (\text{mod } p)$, der $p$ er primtall.


Mer generelt resultat: Gang Wilsons teorem med inversen av p-1 modulo p, som er -1, så fås at $(p-2)!\equiv 1\pmod p$.
Beware of the Ratmen during the full moon for they grow stronger as the moon gets fuller
Gustav offline
Tyrann
Tyrann
Brukerens avatar
Innlegg: 4276
Registrert: 12/12-2008 12:44

Re: Fakultet-rekke, modulo 15

Innlegg Markus » 23/12-2017 10:51

Gustav skrev:
Markus skrev:Liten fakultetmodulooppfølger:

Finn $17! \enspace (\text{mod } 19)$

Hint hvis noen ikke vet helt hvor man skal starte:
[+] Skjult tekst
Wilsons teorem: $(p-1)! \equiv -1 \enspace (\text{mod } p)$, der $p$ er primtall.


Mer generelt resultat: Gang Wilsons teorem med inversen av p-1 modulo p, som er -1, så fås at $(p-2)!\equiv 1\pmod p$.


Fint resultat, og selv fulgte jeg samme tankegang som i beviset av det generelle resultatet da jeg løste denne selv. Med en gang man vet det generelle resultatet, blir jo denne særdeles triviell. Kult å se at det kan generaliseres!

Her er en til oppfølger:
Vis at $437 \mid (18! + 1)$
Markus offline
Fermat
Fermat
Innlegg: 759
Registrert: 20/09-2016 12:48
Bosted: NTNU

Re: Fakultet-rekke, modulo 15

Innlegg Janhaa » 23/12-2017 13:06

Markus skrev:Her er en til oppfølger.
Vis at $437 \mid (18! + 1)$

vi har at:
[tex]437=19*23[/tex]
og
[tex]\gcd(19,23)=1[/tex]
fra Wilson's theorem:
[tex]18!\equiv -1 \pmod{19}[/tex]
og
[tex]22!\equiv -1 \pmod{23}[/tex]
videre er:
[tex]22!=22*21*20*19*18!\equiv (-1)(-2)(-3)(-4)18!=24*18! \pmod{23}[/tex]
DVs:
[tex]22!\equiv18! \pmod{23}[/tex]
altså:
[tex]18!\equiv -1 \pmod{23}[/tex]
endelig:
[tex]18!\equiv -1 \pmod{19*23}[/tex]
eller:
[tex]18!\equiv -1 \pmod{437}[/tex]
La verken mennesker eller hendelser ta livsmotet fra deg.
Marie Curie, kjemiker og fysiker.

[tex]\large\dot \rho = -\frac{i}{\hbar}[H,\rho][/tex]
Janhaa offline
Boltzmann
Boltzmann
Brukerens avatar
Innlegg: 7732
Registrert: 21/08-2006 02:46
Bosted: Grenland

Re: Fakultet-rekke, modulo 15

Innlegg Markus » 23/12-2017 13:21

Formidabelt! :D
Markus offline
Fermat
Fermat
Innlegg: 759
Registrert: 20/09-2016 12:48
Bosted: NTNU

Hvem er i forumet

Brukere som leser i dette forumet: Ingen registrerte brukere og 11 gjester