Sirkel innskrevet i bell curves

Her kan brukere av forum utfordre hverandre med morsomme oppgaver og nøtter man ønsker å dele med andre. Dette er altså ikke et sted for desperate skrik om hjelp, de kan man poste i de andre forumene, men et sted for problemløsing på tvers av trinn og fag.

Moderatorer: Vektormannen, espen180, Aleks855, Solar Plexsus, Gustav, Nebuchadnezzar, Janhaa

Svar
Aleks855
Rasch
Rasch
Innlegg: 6855
Registrert: 19/03-2011 15:19
Sted: Trondheim
Kontakt:

La $f(x) = e^{-x^2}$ og $g(x) = -f(x) = -e^{-x^2}$. (Les Normalfordeling for kontekst: https://no.wikipedia.org/wiki/Normalfordeling.)

Finn arealet, uttrykt ved $x$, av den største sirkelen som kan innskrives mellom normalfordelingskurven og sin negative motpart.

Bilde
Bilde
Nebuchadnezzar
Fibonacci
Fibonacci
Innlegg: 5648
Registrert: 24/05-2009 14:16
Sted: NTNU

Eneste mulighet for at sirkelen skal være innskrevet innenfor gausskurven er at radiusen treffer kurven akkuratt i vendepunktet. Ellers så vil sirkelen skjøre gausskurvene i mer enn fire punkter (8).

Så for å finne radiusen må vi bare løse

$ \hspace{1cm}
x = e^{-x^2}
$

Lambert-W funksjonen er definert som løsningen av $Y = X e^X \Leftrightarrow X = W(Y)$. Via litt omskrivning har vi
$
x = e^{-x^2} \Leftrightarrow x e^{x^2} = 1 \ \Rightarrow x^2 e^{2x^2} = 1^2 \Rightarrow 2 x^2 e^{2x^2} = 2 \Rightarrow 2x^2 = W(2) \Rightarrow x = \sqrt{\frac{W(2)}{2}}
$

Radiusen vil da være $r^2 = x^2 + x^2 \Rightarrow r = \sqrt{2} x = W(2)$ på grunn av pytagoras.

Slik at arealet av sirkelen blir $A = \pi r^2 = \pi W(2) $. Hvor $W(2)$ SVÆRT enkelt kan beregnes via Newtons metode og relasjonen $2 = x e^x$.
"Å vite hva man ikke vet er og en slags allvitenhet" - Piet Hein
https://s.ntnu.no/Integralkokeboken
Lektor - Matematikk, Fysikk og Informatikk
Aleks855
Rasch
Rasch
Innlegg: 6855
Registrert: 19/03-2011 15:19
Sted: Trondheim
Kontakt:

Wow! Hadde ikke sett for meg numerikk, men det ser rett ut. Svaret er i alle fall innenfor $\pm 0.8\%$ av den analytiske gitt WolframAlphas tilnærming for $W(2)$, så jeg som ikke er helt kjent med LambertW må godta det. Antar at flere iterasjoner ville gitt bedre og bedre tilnærminger.
Bilde
Nebuchadnezzar
Fibonacci
Fibonacci
Innlegg: 5648
Registrert: 24/05-2009 14:16
Sted: NTNU

Esj. Flaue greier. løsninga over blir ikke helt riktig. Trodde at det optimale skjæringspunktet var mellom $x$ og $e^{-x^2}$, fordi dette ga vendepunktet. Men for det første gir det ikke vendepunktet (det er jo $x=1/\sqrt{2}$) og for det andre er ikke den ideelle $x$-verdien plassert i vendepunktet.

Fra pytagoras er avstanden mellom gausskurven og origo gitt som

$ \hspace{1cm}
R(x) = \sqrt{ (x)^2 + (e^{-x^2})^2 } = \sqrt{x^2 + e^{-2x^2} }
$

For å finne den minste avstanden deriverer vi det som står under rottegnet

$ \hspace{1cm}
(x^2 + e^{-2x^2})' = 2x ( 1 - 2 e^{-2x^2} ) \Rightarrow x = 0 \ \vee \ x = \sqrt{ \frac{\log 2}{2} }
$

Radiusen er da

$ \hspace{1cm}
r : = R\bigl( \sqrt{\log \sqrt{2}\,}\bigr) = \sqrt{ \frac{1}{2} + \frac{\log 2}{2} }
$

Slik at det største arealet til den innskrevne sirkelen blir

$ \hspace{1cm}
A = \pi r^2 = \frac{\pi}{2} (1 + \log 2)
$
"Å vite hva man ikke vet er og en slags allvitenhet" - Piet Hein
https://s.ntnu.no/Integralkokeboken
Lektor - Matematikk, Fysikk og Informatikk
Gustav
Tyrann
Tyrann
Innlegg: 4555
Registrert: 12/12-2008 12:44

Alternativt: La $\vec{r}(x)=(x,e^{-x^2})$ være posisjonsvektoren til punkter på grafen til gausskurven. Da vil sirkelen tangere gausskurven når hastighetsvektoren $\vec{r}'(x)$ står normalt på $\vec{r}(x)$, altså når $\vec{r}(x)\cdot \vec{r}'(x)=0$, som gir samme løsning som forrige innlegg.
Markus
Fermat
Fermat
Innlegg: 767
Registrert: 20/09-2016 13:48
Sted: NTNU

Kan man ta i bruk Langranges multiplikatormetode her?

Jeg prøvde med funksjonene $f(x,y)=x^2+y^2$ og $g(x,y)=e^{-x^2}-y$ under bibetingelsen $g(x,y)=0$. Maksimalpunktet er der funksjonskurvene tangerer hverandre så likningssystemet som må løses er $\nabla f = \lambda \nabla g$. Ved å løse likninggsystemet vil vi få et punkt $(x,y)$ som kan settes inn i sirkellikningen for å finen $r^2$ i sirkelen. Jeg får dog en kompleks løsning på minst en av variablene uansett hvilken måte jeg løser likningssystemet på, og jeg ser ikke helt hvordan jeg skal komme meg videre da.

Det er jo selvfølgelig mulig (og godt sannsynlig) at jeg har gjort noe feil, eller har misforstått noe med Lagranges multiplikatormetode. Noen som har prøvd å løse den med Lagranges multiplikatormetode og lyktes?
Gustav
Tyrann
Tyrann
Innlegg: 4555
Registrert: 12/12-2008 12:44

Markus skrev:Kan man ta i bruk Langranges multiplikatormetode her?

Jeg prøvde med funksjonene $f(x,y)=x^2+y^2$ og $g(x,y)=e^{-x^2}-y$ under bibetingelsen $g(x,y)=0$. Maksimalpunktet er der funksjonskurvene tangerer hverandre så likningssystemet som må løses er $\nabla f = \lambda \nabla g$. Ved å løse likninggsystemet vil vi få et punkt $(x,y)$ som kan settes inn i sirkellikningen for å finen $r^2$ i sirkelen. Jeg får dog en kompleks løsning på minst en av variablene uansett hvilken måte jeg løser likningssystemet på, og jeg ser ikke helt hvordan jeg skal komme meg videre da.

Det er jo selvfølgelig mulig (og godt sannsynlig) at jeg har gjort noe feil, eller har misforstått noe med Lagranges multiplikatormetode. Noen som har prøvd å løse den med Lagranges multiplikatormetode og lyktes?
$\mathcal{L}(x,y,\lambda)=x^2+y^2+\lambda (e^{-x^2}-y)$.

$\frac{\partial \mathcal{L}}{\partial x}=2x-2x\lambda e^{-x^2}=0$
$\frac{\partial \mathcal{L}}{\partial y}=2y-\lambda=0$
$\frac{\partial \mathcal{L}}{\partial \lambda}=e^{-x^2}-y=0$

Som gir løsningen $x=0,y=1,\lambda=2$ som maksimum.

Hvis $x\neq 0$ fås $e^{-x^2}=\lambda^{-1}$, så $y=\lambda^{-1}$, og $\lambda=2y=2\lambda^{-1}\Rightarrow \lambda=\pm \sqrt{2}$. Da blir $y^2= \frac12$ og $x^2=\frac12 \ln 2$, som minimum, og løsning på problemet.
Markus
Fermat
Fermat
Innlegg: 767
Registrert: 20/09-2016 13:48
Sted: NTNU

Jeg må rett og slett bare ha rota voldtsomt med likningssystemet mitt, fordi nå får jeg løst det helt fint..

Ser dog at vi ender opp med to ulike likningssystem fortegnsmessig, og du får jo en annen $\lambda$ en meg på den første. Hva er vanligst av å bruke "notasjonen" $\nabla f = \lambda \nabla g$ eller $\nabla \mathcal{L}(x,y,\lambda) = 0$ når en bruker Langranges multiplikatormetode?


Legger ved mitt løsningsforslag, så kan du se på forskjellen i likningssystemet.
Gitt $f(x,y)=x^2+y^2$ og $g(x,y)=e^{-x^2}-y=0$. Kritiske punkt finner vi der funksjonskurvene tangerer hverandre, altså der gradientene er parallelle. Ved å sette $\nabla f = \lambda \nabla g$ får vi

$2x = -\lambda 2xe^{-x^2}$
$2y = -\lambda$
$e^{-x^2}-y=0$

Gitt $x=0$, får jeg løsningen $x=0, y=1, \lambda = -2$, som skiller seg ut på fortegn på siste variabel, selv om det i grunn ikke spiller noen rolle for det endelige svaret.

Ellers får vi fra likning 1 at $-\lambda^{-1}=e^{-x^2}$, så $\frac{1}{2y} = -\lambda^{-1} \therefore -\lambda = 2y$, så $2y = e^{x^2} \implies 2e^{-x^2} = e^{x^2} \therefore \ln(2) = 2x^2 \therefore x^2 = \frac{\ln(2)}{2}$ og $y^2=e^{-2x^2} = e^{-\ln(2)} = \frac12$. Siden løsningene der $x \neq 0$ har lavere verdier for $x$ og $y$ er minimumet gitt ved disse og $A=\pi(x^2+y^2) = \frac{\pi}{2} \left (1+\ln(2) \right)$
Aleks855
Rasch
Rasch
Innlegg: 6855
Registrert: 19/03-2011 15:19
Sted: Trondheim
Kontakt:

Fint!

Jeg brukte også metoden med å finne $\min\{ \textrm{avstand mellom origo og }(x^2, e^{-2x^2})\}$ ved hjelp av derivasjon, som gir den minste radien som tangerer kurven.

Oppfølger:

En sirkel med radius $r=1$ er innskrevet i kurven $y = x^2$ og tangerer kurven i to punkter. Hvor stort er arealet mellom sirkelen og kurven?

Bilde
Bilde
Gustav
Tyrann
Tyrann
Innlegg: 4555
Registrert: 12/12-2008 12:44

Markus skrev: Ser dog at vi ender opp med to ulike likningssystem fortegnsmessig, og du får jo en annen $\lambda$ en meg på den første. Hva er vanligst av å bruke "notasjonen" $\nabla f = \lambda \nabla g$ eller $\nabla \mathcal{L}(x,y,\lambda) = 0$ når en bruker Langranges multiplikatormetode?
Ligningssystemene er jo essensielt de samme opp til variabelskiftet $\lambda \to -\lambda$. Jeg tror begge fremgangsmåtene du nevner er omtrent like vanlige.
DennisChristensen
Grothendieck
Grothendieck
Innlegg: 826
Registrert: 09/02-2015 23:28
Sted: Oslo

Aleks855 skrev: Oppfølger:

En sirkel med radius $r=1$ er innskrevet i kurven $y = x^2$ og tangerer kurven i to punkter. Hvor stort er arealet mellom sirkelen og kurven?

Bilde
La sirkelen ha likning $$x^2 + (y-y_0)^2 = 1.$$ Vi ønsker at likningen $$x^2 + (x^2 - y_0)^2 = 1$$ skal ha nøyaktig to løsninger for $x$, som er symmetriske om $y$-aksen. Anvender vi annengradsformelen på uttrykket ovenfor, finner vi at vi trenger $$\Delta\left(\lambda^2 + (1-2y_0)\lambda + y_0^2-1\right) = 5 - 4y_0 = 0,$$ så $y_0 = \frac54$, og sirkelen tangerer kurven når $x = \pm \frac{\sqrt{3}}{2}.$ Dermed blir arealet mellom sirkelen og kurven lik $$\int_{-\frac{\sqrt{3}}{2}}^{\frac{\sqrt{3}}{2}} \left(\sqrt{1-x^2} + \frac54 - x^2\right)\, \text{d}x = \left[\frac12\sqrt{1-x^2} + \arcsin(x) + \frac54x - \frac13x^3\right]_{\frac{\sqrt{3}}{2}}^{\frac{\sqrt{3}}{2}} = \frac{5\sqrt{3}}{4} + \frac{\pi}{3}.$$


Oppfølger (fin oppgave uten hjelpemidler for R2-elever)
La skjæringspunktene mellom sirkelen og parabelen være $P$ og $Q$. Finn alle parabeler $f$symmetriske om $y$-aksen som skjærer $g(x)=x^2$ i $P$ og $Q$ slik at arealet mellom grafene til $f$ og $g$ er lik arealet ovenfor.
Svar