Side 1 av 1

Tallteori (VGS-nivå)

InnleggSkrevet: 26/04-2019 15:47
Gustav
Gitt at $x^2=y+a$ og $y^2=x+a$.

Finn alle heltall $a$ slik at $x,y$ er heltall.

Re: Tallteori (VGS-nivå)

InnleggSkrevet: 02/05-2019 22:48
Markus
Anta først $x=y$, da får vi $x^2=x+a$, så $a=x^2-x$.
Anta så $x\neq y$, og observer at $(x+y)(x-y)=x^2-y^2=(y+a)-(x+a)=y-x$, som vil si at $x+y=-1$, og $a=x^2-y=x^2-(-1-x)=x^2+x+1$.

Dermed er $a=n^2-n$ og $a=n^2+n+1$ for $n \in \mathbb{Z}$.

Re: Tallteori (VGS-nivå)

InnleggSkrevet: 03/05-2019 21:31
Gustav
Markus skrev:Anta først $x=y$, da får vi $x^2=x+a$, så $a=x^2-x$.
Anta så $x\neq y$, og observer at $(x+y)(x-y)=x^2-y^2=(y+a)-(x+a)=y-x$, som vil si at $x+y=-1$, og $a=x^2-y=x^2-(-1-x)=x^2+x+1$.

Dermed er $a=n^2-n$ og $a=n^2+n+1$ for $n \in \mathbb{Z}$.


Selvsagt helt riktig :)