Sannsynlighet

Her kan brukere av forum utfordre hverandre med morsomme oppgaver og nøtter man ønsker å dele med andre. Dette er altså ikke et sted for desperate skrik om hjelp, de kan man poste i de andre forumene, men et sted for problemløsing på tvers av trinn og fag.

Sannsynlighet

Innlegg DennisChristensen » 25/05-2019 10:57

La $x_1, x_2, \dots$ være uniformt fordelt på $[0,1]$. Finn forventet verdi til $n$, der $\sum_{i=1}^n x_i \geq 1 > \sum_{i=1}^{n-1}x_i$.
DennisChristensen offline
Fermat
Fermat
Innlegg: 796
Registrert: 09/02-2015 23:28
Bosted: Oslo

Re: Sannsynlighet

Innlegg DennisChristensen » 04/06-2019 07:55

Legger ved et hint siden ingen har prøvd seg ennå:
[+] Skjult tekst
$$\mathbb{E}[n] = \sum_{k=1}^{\infty}\mathbb{P}(n\geq k).$$
DennisChristensen offline
Fermat
Fermat
Innlegg: 796
Registrert: 09/02-2015 23:28
Bosted: Oslo

Hvem er i forumet

Brukere som leser i dette forumet: Ingen registrerte brukere og 8 gjester