vann i en bolle

Her kan brukere av forum utfordre hverandre med morsomme oppgaver og nøtter man ønsker å dele med andre. Dette er altså ikke et sted for desperate skrik om hjelp, de kan man poste i de andre forumene, men et sted for problemløsing på tvers av trinn og fag.

vann i en bolle

Innlegg Janhaa » 17/12-2019 20:23

spherical-bowl.png
spherical-bowl.png (226.23 KiB) Vist 510 ganger


Slenger inn en grei geometri-oppgave før syden-turen :=)
Det finnes formler for kulekalott volum etc på nettet.
Hva med å løse den med andre metoder/måter.
F. eks. integraler?
La verken mennesker eller hendelser ta livsmotet fra deg.
Marie Curie, kjemiker og fysiker.

[tex]\large\dot \rho = -\frac{i}{\hbar}[H,\rho][/tex]
Janhaa offline
Boltzmann
Boltzmann
Brukerens avatar
Innlegg: 7941
Registrert: 21/08-2006 02:46
Bosted: Grenland

Re: vann i en bolle

Innlegg Mattegjest » 17/12-2019 21:03

Legg eit snitt vinkelrett x-aksen i avstand x får origo.

Snittflata har arealet A( x ) = pi ( r[tex]^{2}[/tex] - x[tex]^{2}[/tex] ) ( r = 5 ) = [tex]\pi[/tex]( 25 - x[tex]^{2}[/tex] )



Volumelementet dV = A( x ) dx = [tex]\pi[/tex]( 25 - x[tex]^{2}[/tex] ) dx


Volum ( kulekalott ) = [tex]\int_{4}^{5} A ( x ) dx)[/tex] = [tex]\frac{14}{3}[/tex][tex]\pi[/tex]
Mattegjest offline

Re: vann i en bolle

Innlegg Kristian Saug » 17/12-2019 21:12

Hei,

h = rot(5^2 - 3^2)m = 4m

så volumet med vann har høyde (5 - 4)m = 1m

"Ytterskallet" av det sirkelformede volumet har funksjon f(x) = +/- rot(5^2 - x^2) = +/- rot(25 - x^2).
Og dette gjelder for 4<x<5, altså vannvolumet.

Vi får Volum vann = π integral(f^2, 4, 5) = π integral((25 - x^2), 4, 5) = π ((25x - (x^3)/3), 4, 5)
= π ((125 - 125/3) - (100 - 64/3)) = π (375/3 - 125/3 - 300/3 + 64/3) = (14/3) π m^3

Se vedlegg for visualisering og digital løsning.

R2- matematikk!

God tur til syden, Janhaa! Passe tid å dra dit nå.
Vedlegg
Vann.odt
(47.03 KiB) 28 ganger
Kristian Saug offline
Weierstrass
Weierstrass
Innlegg: 453
Registrert: 11/11-2019 18:23

Re: vann i en bolle

Innlegg Janhaa » 18/12-2019 13:00

Kristian Saug skrev:Hei,
h = rot(5^2 - 3^2)m = 4m
så volumet med vann har høyde (5 - 4)m = 1m
"Ytterskallet" av det sirkelformede volumet har funksjon f(x) = +/- rot(5^2 - x^2) = +/- rot(25 - x^2).
Og dette gjelder for 4<x<5, altså vannvolumet.
Vi får Volum vann = π integral(f^2, 4, 5) = π integral((25 - x^2), 4, 5) = π ((25x - (x^3)/3), 4, 5)
= π ((125 - 125/3) - (100 - 64/3)) = π (375/3 - 125/3 - 300/3 + 64/3) = (14/3) π m^3
Se vedlegg for visualisering og digital løsning.
R2- matematikk!
God tur til syden, Janhaa! Passe tid å dra dit nå.

Sjølsagt riktig på begge to. R2 ja.
Takk for det, skal bli greit med sol og slippe jule-maset.
La verken mennesker eller hendelser ta livsmotet fra deg.
Marie Curie, kjemiker og fysiker.

[tex]\large\dot \rho = -\frac{i}{\hbar}[H,\rho][/tex]
Janhaa offline
Boltzmann
Boltzmann
Brukerens avatar
Innlegg: 7941
Registrert: 21/08-2006 02:46
Bosted: Grenland

Hvem er i forumet

Brukere som leser i dette forumet: Ingen registrerte brukere og 42 gjester