Halvsirkeloppgave

Her kan brukere av forum utfordre hverandre med morsomme oppgaver og nøtter man ønsker å dele med andre. Dette er altså ikke et sted for desperate skrik om hjelp, de kan man poste i de andre forumene, men et sted for problemløsing på tvers av trinn og fag.

Halvsirkeloppgave

Innlegg LAMBRIDA » 08/12-2020 15:31

Slenger med ei kjekk halvsirkeloppgave mellom disse kalendernøttene for å skape litt variasjoner.

Oppgaven går ut på å finne radien til 5 like store halvsirkler som er innskrevne i en sirkel med radius 6 cm. Halvsirklenes diametrer vender ut mot sirkelens omkrets og tangerer denne og hverandre, slik at diametrene beskriver en regulær femkant med avkuttet hjørner.
LAMBRIDA offline
Cauchy
Cauchy
Innlegg: 221
Registrert: 16/11-2011 19:50
Bosted: Hjelmeland

Re: Halvsirkeloppgave

Innlegg Gjest » 08/12-2020 18:01

Har tolket den slik
En sirkel har 360 grader. Hvis du har 5 små diametre inne sirkelen som vender mot den store sirkelens omkrets vil hver sidelengde i femkanten utgjøre en korde i den store sirkelen, totalt 5 av dem.

Hvert hjørne i femkanten kan plasseres på [tex]0^{\circ},72^{\circ},144^{\circ},216^{\circ},288^{\circ},360^{\circ}[/tex] på sirkelens periferi.Omkretsen av hver av sirkelbuene som er 72 grader tilsvarer[tex]\frac{2*\pi *6*72}{360}=7.54[/tex]. Konstruer en 72 graders sentrumsvinkel. Ved hjelp av sinussetniningen og cosinussetningen kommer jeg fram til at diamteren i de lille halvsirklene er 7.1 cm, da må radiusen være 3.55 cm som er halve siden i den ene sidenlengden i femkanten.


Kan også løses på geogebra
https://imgur.com/a/VJvBIEO
Gjest offline

Re: Halvsirkeloppgave

Innlegg LAMBRIDA » 08/12-2020 18:18

Takk for forsøket! Halvsirklene skal ikke overlappe hverandre, men akkurat tangere hverandre. Eg skriver også avkuttet hjørner på den regulære femkanten.
LAMBRIDA offline
Cauchy
Cauchy
Innlegg: 221
Registrert: 16/11-2011 19:50
Bosted: Hjelmeland

Re: Halvsirkeloppgave

Innlegg Gjest » 08/12-2020 19:09

Hvordan kan de små sirklenes diametre tangere "sirkelens omkrets" og hverandre innenfra når de er innskrevet inne i den store sirkelen, eneste måten er at de treffes i et eller flere skjæringspunkt.

Presenter en konstruksjon av tegningen din
Gjest offline

Re: Halvsirkeloppgave

Innlegg LAMBRIDA » 08/12-2020 19:34

Det er jo bare halvsirklenes hjørner som treffer innsiden av sirkelen.
Når det gjelder å legge ved en tegning, så er eg helt blank på hvordan det gjøres. Det er noe eg savner å kunne. Eg tek gjerne imot tips.
LAMBRIDA offline
Cauchy
Cauchy
Innlegg: 221
Registrert: 16/11-2011 19:50
Bosted: Hjelmeland

Re: Halvsirkeloppgave

Innlegg Gjest » 08/12-2020 20:06

når det gjelder sirklene som overlapper på figuren jeg postet , så oppnår man samme tallverdi selv om du reduserer størrelsen på hver og en av dem.

uten om det vil jeg anta at det ikke finnes en entydig løsning grunnet en vag oppgaveformulering
Gjest offline

Re: Halvsirkeloppgave

Innlegg LAMBRIDA » 08/12-2020 20:14

Det er ei reell oppgave og svaret kan formuleres i et flott matematisk uttrykk.
LAMBRIDA offline
Cauchy
Cauchy
Innlegg: 221
Registrert: 16/11-2011 19:50
Bosted: Hjelmeland

Re: Halvsirkeloppgave

Innlegg LektorNilsen » 09/12-2020 11:17

Skjermbilde 2020-12-09 kl. 11.15.22.png
Skjermbilde 2020-12-09 kl. 11.15.22.png (45.45 KiB) Vist 3299 ganger
LAMBRIDA skrev:Det er jo bare halvsirklenes hjørner som treffer innsiden av sirkelen.
Når det gjelder å legge ved en tegning, så er eg helt blank på hvordan det gjøres. Det er noe eg savner å kunne. Eg tek gjerne imot tips.



Har forsøkt meg på en tegning, som i det minste kan fungere som en skisse.
(Alle diameterne skal være korder, så se bort fra noe unøyaktighet knyttet til dette)
LektorNilsen offline
Jacobi
Jacobi
Innlegg: 321
Registrert: 02/06-2015 14:59

Re: Halvsirkeloppgave

Innlegg Mattebruker » 09/12-2020 12:08

r = [tex]\frac{6}{41}\cdot \sqrt{41(15 - 2\sqrt{5})}[/tex]
Mattebruker offline

Re: Halvsirkeloppgave

Innlegg LAMBRIDA » 09/12-2020 13:36

Svaret er helt rett.
Flott uttrykk som kan forkortes noe mer, men det betyr jo ingenting. Tegningen viser akkurat slik eg har beskrevet det.
Hvordan gjør du det for å legge ved en tegning?
LAMBRIDA offline
Cauchy
Cauchy
Innlegg: 221
Registrert: 16/11-2011 19:50
Bosted: Hjelmeland

Re: Halvsirkeloppgave

Innlegg Mattebruker » 09/12-2020 13:56

Litt problematisk med teikning då eg ikkje har tilgang til det nødvendige verktøyet. Men eg kan forklare framg. måten i kortform: Pytagoras gir

r[tex]^{2}[/tex] + ( [tex]\frac{r}{sin36^{0}}[/tex] )[tex]^{2}[/tex] = 6[tex]^{2}[/tex].

Løyser ut r , sett inn for sin36[tex]^{0}[/tex], og får svaret ( eksakt uttrykk ).
Mattebruker offline

Re: Halvsirkeloppgave

Innlegg LektorNilsen » 09/12-2020 14:08

LAMBRIDA skrev:Svaret er helt rett.
Flott uttrykk som kan forkortes noe mer, men det betyr jo ingenting. Tegningen viser akkurat slik eg har beskrevet det.
Hvordan gjør du det for å legge ved en tegning?


Jeg tegnet i GeoGebra og tok skjermbilde, som jeg lastet opp som vedlegg til innegget mitt (og plasserte vedlegget i innlegget, som er et valg man får).
LektorNilsen offline
Jacobi
Jacobi
Innlegg: 321
Registrert: 02/06-2015 14:59

Re: Halvsirkeloppgave

Innlegg Aleks855 » 09/12-2020 14:32

LAMBRIDA skrev:Svaret er helt rett.
Flott uttrykk som kan forkortes noe mer, men det betyr jo ingenting. Tegningen viser akkurat slik eg har beskrevet det.
Hvordan gjør du det for å legge ved en tegning?


Bilde
Bilde
Aleks855 online
Rasch
Rasch
Innlegg: 6574
Registrert: 19/03-2011 15:19
Bosted: Trondheim

Hvem er i forumet

Brukere som leser i dette forumet: Ingen registrerte brukere og 6 gjester