dag 13

Her kan brukere av forum utfordre hverandre med morsomme oppgaver og nøtter man ønsker å dele med andre. Dette er altså ikke et sted for desperate skrik om hjelp, de kan man poste i de andre forumene, men et sted for problemløsing på tvers av trinn og fag.

dag 13

Innlegg ABEL1 » 12/12-2020 23:58

dag 13,

Finn alle ordnede løsninger (m,n) av likningen
[tex]\frac{1}{m}+\frac{1}{n}=\frac{3}{2018}[/tex]
ABEL1 offline

Re: dag 13

Innlegg Janhaa » 13/12-2020 11:49

ABEL1 skrev:dag 13,

Finn alle ordnede løsninger (m,n) av likningen
[tex]\frac{1}{m}+\frac{1}{n}=\frac{3}{2018}[/tex]


multipliserer med 2018mn, så:

[tex]2018n+2018m=3mn\\ \\ 2*1009(n+m)=3mn[/tex]

ser iallfall at:
[tex]n=1009, m=2018[/tex]
og
[tex]m=1009, n=2018[/tex]

og sikkert flere løsninger...
La verken mennesker eller hendelser ta livsmotet fra deg.
Marie Curie, kjemiker og fysiker.

[tex]\large\dot \rho = -\frac{i}{\hbar}[H,\rho][/tex]
Janhaa offline
Boltzmann
Boltzmann
Brukerens avatar
Innlegg: 8388
Registrert: 21/08-2006 02:46
Bosted: Grenland

Re: dag 13

Innlegg abel5 » 13/12-2020 15:30

Løsninger:(m,n)=(-678048,672),(0,0),(672,-678048),(673,1358114),(674,340033),(1009,2018),(2018,1009),(340033,674),(1358114,673)
abel5 offline

Re: dag 13

Innlegg ABEL1 » 13/12-2020 20:42

Janhaa skrev:
ABEL1 skrev:dag 13,

Finn alle ordnede løsninger (m,n) av likningen
[tex]\frac{1}{m}+\frac{1}{n}=\frac{3}{2018}[/tex]


multipliserer med 2018mn, så:

[tex]2018n+2018m=3mn\\ \\ 2*1009(n+m)=3mn[/tex]

ser iallfall at:
[tex]n=1009, m=2018[/tex]
og
[tex]m=1009, n=2018[/tex]

og sikkert flere løsninger...


Delvis riktig, en litt lureoppgave, siden oppgaven ikke begrenser bare til positive heltall.

Multipliser [tex]2018[/tex] på begge sider av likhetstegnet og forkort [tex]2018[/tex] på høyre side slik at likningen blir [tex]2018(\frac{1}{m}+\frac{1}{n})=3[/tex]. Det er tilstrekkelig å vise at ved å anvende identiteten [tex]\frac{1}{\frac{1}{a}}=1:\frac{1}{a}=1*\frac{a}{1}=a[/tex] på [tex]m[/tex] og [tex]n[/tex] kan liknngen reduseres til [tex]2018(\frac{1}{\frac{2018}{a_1}}+\frac{1}{\frac{2018}{a_2}})=a_1+a_2=3[/tex] . Gitt at [tex]a_1\in \mathbb{\mathbb{Z^-}}[/tex] og [tex]a_2\in \mathbb{Z}^+[/tex] gir det uendelige antall kombinasjoner [tex](m,n)[/tex] når de uttrykkes som

[tex](\frac{2018}{a_1}, \frac{2018}{a_2})[/tex]
ABEL1 offline

Hvem er i forumet

Brukere som leser i dette forumet: Ingen registrerte brukere og 17 gjester

cron