inudksjon, fibonacci følge

Mange finner bevis vanskelig. Her er rom for spørsmål vedrørende bevis, og for å dele dine bevis med andre. Vi tenker først og fremst videregående nivå, men det er ingen begrensninger her.

inudksjon, fibonacci følge

Innlegg livingdeaddoll » 25/09-2010 20:59

klarer ikke helt å få dreisen på induksjonsbevis så lurer på starthjelp til denne oppgaven:

skal vise for følgen:
fk = fk−1 + fk−2 , for k ≥ 3,
med startverdiene f1 = f2 = 1, at f3n er et partall ved induksjon.

er det meningen at jeg skal bruke xn uttrykket jeg får ved løse differensligningen til å bevise påstanden, slik at det blir seendes slik ut:
p(n) = (sqrt(5)/5)*(((1+sqrt(5))/2)**n - ((1-sqrt(5))/2)**n) = p(n)/2
livingdeaddoll offline
Pytagoras
Pytagoras
Innlegg: 5
Registrert: 23/09-2010 09:42

Innlegg Karl_Erik » 25/09-2010 22:13

Det kan hende det også går an, men det de sikkert har tenkt at du skal gjøre er å bruke likningen du fikk oppgitt. Anta først at påstanden holder for [tex]n[/tex]. Da får du at [tex]F_{3(n+1)}=F_{3n+3}=F_{3n+2}+F_{3n+1}=(F_{3n+1}+F_{3n})+F_{3n+1}=F_{3n}+2F_{3n+1}[/tex].

Hvorfor viser dette at [tex]F_{3(n+1)}[/tex] er et partall?
Karl_Erik offline
Guru
Guru
Innlegg: 1076
Registrert: 22/10-2006 22:45

Innlegg livingdeaddoll » 26/09-2010 10:09

åja.. da skjønner jeg:)
F(3n) har vi alt antatt stemmer, og et tall ganget med 2 vil alltid være delbart med 2(=>partall).
livingdeaddoll offline
Pytagoras
Pytagoras
Innlegg: 5
Registrert: 23/09-2010 09:42

Hvem er i forumet

Brukere som leser i dette forumet: Ingen registrerte brukere og 1 gjest