Induksjonsbevis

Mange finner bevis vanskelig. Her er rom for spørsmål vedrørende bevis, og for å dele dine bevis med andre. Vi tenker først og fremst videregående nivå, men det er ingen begrensninger her.

Induksjonsbevis

Innlegg softis » 17/03-2017 09:45

Jeg sliter litt med dette induksjonsbeviset, har noen forslag til hvordan jeg skal vise dette ved induksjon:

3(1*2 + 2*3 + 3*4 +.....+ n(n+1)) = n(n+1)(n+2)
softis offline

Re: Induksjonsbevis

Innlegg Aleks855 » 17/03-2017 10:09

For hvilke $n$ skal det gjelde? Har du testa grunntilfellet?
Bilde
Aleks855 offline
Rasch
Rasch
Innlegg: 5796
Registrert: 19/03-2011 15:19
Bosted: Trondheim

Re: Induksjonsbevis

Innlegg softis » 17/03-2017 10:18

Ja, jeg har testa for n=1, og for vilkårlige n-verdier. Men så skal det også gjelde for n+1, og det er der jeg sliter med algebraen.... :?
softis offline

Re: Induksjonsbevis

Innlegg Aleks855 » 17/03-2017 10:25

Klarer du å skrive $1*2 + 2*3 + 3*4 +.....+ n(n+1)$ på summeform? Altså med $\sum$?
Bilde
Aleks855 offline
Rasch
Rasch
Innlegg: 5796
Registrert: 19/03-2011 15:19
Bosted: Trondheim

Re: Induksjonsbevis

Innlegg softis » 17/03-2017 10:42

nei.....?? :|
softis offline

Re: Induksjonsbevis

Innlegg Janhaa » 17/03-2017 11:51

softis skrev:nei.....?? :|

[tex]\sum_{k=1}^{n}k=\frac{n(n+1)}{2}[/tex]

og tilsvarende for:
[tex]1^2+2^2+3^2+...+n^2[/tex]
La verken mennesker eller hendelser ta livsmotet fra deg.
Marie Curie, kjemiker og fysiker.

[tex]\large\dot \rho = -\frac{i}{\hbar}[H,\rho][/tex]
Janhaa offline
Boltzmann
Boltzmann
Brukerens avatar
Innlegg: 7729
Registrert: 21/08-2006 02:46
Bosted: Grenland

Re: Induksjonsbevis

Innlegg softis » 18/03-2017 18:26

Takk for svar....men jeg er nok litt treg, og forstår det fortsatt ikke..... :roll:
Jeg trodde jeg skulle ta alle steder der det står n, så skal jeg ta n+1.... Og det er da jeg ikke får venstre og høyre side til å stemme.....at de blir like..... :x
softis offline

Re: Induksjonsbevis

Innlegg DennisChristensen » 19/03-2017 12:01

softis skrev:Jeg sliter litt med dette induksjonsbeviset, har noen forslag til hvordan jeg skal vise dette ved induksjon:

3(1*2 + 2*3 + 3*4 +.....+ n(n+1)) = n(n+1)(n+2)


Basistilfelle:
VS $= 3\cdot 1\cdot 2 = 6 = 1(1 + 1)(1 + 2) =$ HS.

Induksjon:
Anta at $3\left(1\cdot 2 + 2\cdot 3 + 3\cdot 4 + \dots + n(n+1)\right) = n(n+1)(n+2), n \geq 1$.

Da er
$\displaystyle \begin{align*} 3\left(1\cdot 2 + 2\cdot 3 + 3\cdot 4 + \dots + n(n+1) + (n+1)(n+2)\right) & = 3\left(1\cdot 2 + 2\cdot 3 + 3\cdot 4 + \dots + n(n+1)\right) + 3(n+1)(n+2) \\
& = n(n+1)(n+2) + 3(n+1)(n+2) \text{ }\text{ }\text{(antatt ved induksjonshypotesen)} \\
& = (n+1)(n+2)(n+3) \end{align*}.$

Dermed er påstanden bevist ved induksjon.
DennisChristensen offline
Fermat
Fermat
Innlegg: 764
Registrert: 09/02-2015 23:28
Bosted: Oslo

Hvem er i forumet

Brukere som leser i dette forumet: Ingen registrerte brukere og 4 gjester