Naturlig tallteori-rekkefølge

Det er god trening å prate matematikk. Her er det fritt fram for alle. Obs: Ikke spør om hjelp til oppgaver i dette underforumet.

Re: Naturlig tallteori-rekkefølge

Innlegg Aleks855 » 04/01-2018 10:27

Janhaa skrev:
Markus skrev:Fant notater på norsk basert på Elementary Number Theory, fra MA1301 på NTNU (høst 2015). Er hele 431 sider, og har oppgaver til hvert kapittel. Tenkte kanskje det kunne være til nytte
Her er link: https://wiki.math.ntnu.no/_media/ma1301/2015h/tallteori.h2014.pdf
Anbefaler deg å se litt på denne OYV, før du eventuelt bestiller bok. Det må samtidig nevnes at du ikke trenger bok for å lære tallteori, eller matte for den saks skyld. Det finnes flere gode nettressurser, og et google-søk hjelper deg som regel lang vei.

Hadde faktisk MA1301- kurset H2014 på NTNU når det kompendiet ble lagd.
Richard Williamson gjorde en formidabel innsats!

og denne eksamen:

https://wiki.math.ntnu.no/_media/ma1301 ... ngelsk.pdf


På oppgave 3a når man skal "Show without calculating that $2\cdot3^{472} \equiv 3 \pmod{53}$", skal man heller ikke bruke mod-aritmetikk for å redusere uttrykket?
Bilde
Aleks855 offline
Rasch
Rasch
Innlegg: 5799
Registrert: 19/03-2011 15:19
Bosted: Trondheim

Re: Naturlig tallteori-rekkefølge

Innlegg Janhaa » 04/01-2018 13:02

Aleks855 skrev:På oppgave 3a når man skal "Show without calculating that $2\cdot3^{472} \equiv 3 \pmod{53}$", skal man heller ikke bruke mod-aritmetikk for å redusere uttrykket?

Meninga er nok å bruke:

Fermat's little theorem
La verken mennesker eller hendelser ta livsmotet fra deg.
Marie Curie, kjemiker og fysiker.

[tex]\large\dot \rho = -\frac{i}{\hbar}[H,\rho][/tex]
Janhaa offline
Boltzmann
Boltzmann
Brukerens avatar
Innlegg: 7730
Registrert: 21/08-2006 02:46
Bosted: Grenland

Re: Naturlig tallteori-rekkefølge

Innlegg Aleks855 » 04/01-2018 14:18

Ah, såklart.
Bilde
Aleks855 offline
Rasch
Rasch
Innlegg: 5799
Registrert: 19/03-2011 15:19
Bosted: Trondheim

Re: Naturlig tallteori-rekkefølge

Innlegg Aleks855 » 09/02-2018 16:25

Hva tror dere om hvor "Well-ordering principle" passer inn?

Jeg hoppa litt pent over det da jeg begynte på første kapittel (som forøvrig ble innledning til induksjonsbevis og binomialteoremet, som foreslått). https://udl.no/p/tallteori/kapittel-1-i ... alteoremet

Jeg tenkte det kanskje var på sin plass å starte med WOP heeeeelt i starten, men valgte å glanse over det, fordi det virket litt i tørreste laget for noe som for de fleste kan virke umåtelig intuitivt.

Men nå som jeg skal begynne å lage videoer om divisjonsalgoritmen, så ser det ut som WOP blir veldig viktig igjen, siden det ser ut som det enkleste beviset for divisjonsalgoritmen eller -teoremet, bruker ideen om at en mengde av naturlige tall har et minste element. Jeg kan selvfølgelig si noe slikt som at "det er intuitivt åpenbart at dette er sant", men det føles skittent. Spesielt med tanke på at mange har vært borti åpne, kontinuerlige mengder/intervaller som jo IKKE har et minste element.

Samtidig, hvis jeg skal lage en video eller to om WOP, så er det kanskje på sin plass å også gjøre dette før videoene om induksjonsbevis, siden WOP er av natur avhengig av det?

Hva tror dere?
Bilde
Aleks855 offline
Rasch
Rasch
Innlegg: 5799
Registrert: 19/03-2011 15:19
Bosted: Trondheim

Re: Naturlig tallteori-rekkefølge

Innlegg Gustav » 09/02-2018 17:00

Er planen å vise induksjon utfra WOP ? Isåfall er det vel naturlig å la WOP komme rett før induksjon. Ingen vits å ta WOP for tidlig, før det trengs til noe annet, etter min mening.
Beware of the Ratmen during the full moon for they grow stronger as the moon gets fuller
Gustav offline
Tyrann
Tyrann
Brukerens avatar
Innlegg: 4276
Registrert: 12/12-2008 12:44

Re: Naturlig tallteori-rekkefølge

Innlegg Aleks855 » 09/02-2018 18:49

Nå har jeg allerede laga noen videoer om induksjon uten at WOP ble tatt opp, men en av bøkene jeg leser tok opp WOP før første kapittel. Det gir jo litt mening, kanskje for det aller første induksjonsbeviset, men det er vel sjeldent man tenker mye over WOP når man fører et slikt bevis, så den dropper det raskt igjen.

Men ja, kanskje nå som jeg skal bruke det resultatet for å forklare divisjonsteoremet, så kan jeg like gjerne la det være litt uti programmet, og heller nevne hvordan det kan relateres til induksjonsbevisene som ligger tidligere.
Bilde
Aleks855 offline
Rasch
Rasch
Innlegg: 5799
Registrert: 19/03-2011 15:19
Bosted: Trondheim

Re: Naturlig tallteori-rekkefølge

Innlegg Gustav » 09/02-2018 19:10

Her har du forresten beviset for at velordningsprinsippet impliserer induksjonsprinsippet: https://proofwiki.org/wiki/Equivalence_ ... mplies_PMI

Jeg vet ikke hvor aktuelt dette er i et første kurs i tallteori, men likevel nyttig å kjenne til hvis du skal lage videoer innen emnet. (Tror jeg selv lærte dette i et introkurs i abstrakt algebra, såvidt jeg husker)
Beware of the Ratmen during the full moon for they grow stronger as the moon gets fuller
Gustav offline
Tyrann
Tyrann
Brukerens avatar
Innlegg: 4276
Registrert: 12/12-2008 12:44

Forrige

Hvem er i forumet

Brukere som leser i dette forumet: Ingen registrerte brukere og 6 gjester